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AFIT/ GCS/ ENG/ OOM-07 

Abstract 

Distributed object systems are a very complex intertwining of heterogene- 

ous hardware, software, and operating systems coupled with communication 

networks of varying protocols and capacities. Distributed components offer im- 

proved performance through parallel processing, improved expansion and scal- 

ability opportunities through modularity, improved availability through replica- 

tion, and improved resource sharing and interoperability through interconnec- 

tion. This research provides a distributed system design methodology to vali- 

date terminal forecasts and gather metrics for the Air Force Weather Agency. 

Proven principles such as component reuse and architectural development are 

applied through the use of parameterized types and design patterns. A cli- 

ent/server measurement model is developed to show the impact of design deci- 

sions on computer resource utilization, system scalability, system performance, 

ease of implementation, and system evolution. An experimental Common Object 

Request Broker Architecture (CORBA) application is implemented to quantify 

the approach's effectiveness toward selecting an appropriate CORBA implemen- 

tation and deploying the application in a distributed environment. While this 

research specifically uses CORBA for system development, the methodology 

presented is easily mapped onto any client/server architecture. 

Xll 



DISTRIBUTED OBJECT SYSTEM ENGINEERING FOR 

TERMINAL AERODROME FORECAST VALIDATION AND 

METRICS PROCESSING 

I. Introduction 

Software collaborating across machine and network boundaries to create 

client/server solutions is the central concept behind distributed object systems 

[8]. In distributed object systems, objects are typically divided between three or 

more tiers: a user interface layer, at least one business layer1 that executes appli- 

cation business logic; and one or more data layers that provide storage and re- 

trieval services for user data. Figure 1 shows a typical topology consisting of 

four layers: 1) system interface layer, 2) business layer, and 3) a data layer further 

subdivided into two distinct layers: a data object layer and data storage layer. 

Because of this organization, distributed object systems are also referred to as N- 

tier models. The terms distributed systems, distributed objects, component-based sys- 

tems, and N-tier systems are interchangeable in this discussion. 

Distributed object system technology provides several advantages over 

monolithic applications. Large component-based applications may be developed 

in small steps, with new system functionality added as a normal course of evolu- 

tion. Treating distributed components as binary black boxes, instead of focusing 

on source code, greatly enhances component autonomy and reuse [13]. Distrib- 

1 Business layer refers to the software rules and logic required to perform application processing requirements. 
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uted components also offer improved performance through parallel processing, 

improved expansion and scalability opportunities through modularity, im- 

proved availability through replication, and improved resource sharing and in- 

teroperability through interconnection [17 and 57]. 

Business Layer 
System Interface j Application Logic 

l 
^ 

3 
ty 

Data Layer 
Data Objects 

ty 

Data Layer 
Data Storage 

Figure 1: A Typical N-Tier Topology 

This investigation relates to open system development in large heteroge- 

neous environments. In general, this effort addresses distributed object system 

development using the Common Object Request Broker Architecture (CORBA) 

[21 and 58]. Specifically, this effort addresses distributed object system devel- 

opment as applied to the Air Force Weather Agency (AFWA) application domain 

and concentrates its efforts on Terminal Aerodrome Forecast (TAF) validation, 

publication, and metrics processing problems [1 and 59]. Issues such as network 

and resource utilization, system scalability, system performance, ease of imple- 

mentation, and system evolution are discussed in great detail. 
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This chapter provides a background on the core problem this research 

addresses: Designing an open, distributed system that validates TAF informa- 

tion, provides validated TAF information to AFWA aviation customers, and 

processes TAF accuracy metrics with no manual intervention. This chapter also 

addresses specific research objectives; the significance and impact anticipated 

from conducting this type of research; applicable assumptions, research scope 

and constraints as they relate to the problem domain; and the approach and or- 

ganization applied to this particular problem. 

1.1 Application Domain 

AFWA currently uses a manpower-intensive process to produce TAF ac- 

curacy metrics. The current process begins when a weather forecaster submits a 

TAF for distribution into the system. The TAF is examined for errors at AFWA. 

TAF accuracy is manually tracked on hand-written forms, then these forms are 

transcribed into a database. On a regular basis, this data is collected at the com- 

mand level for report-generation. Besides the apparent process inefficiencies 

from duplicate data entry, there are two other inherent problems. Although a 

given metric is pre-defined, forecasters can track only very specific and simple 

metrics due to current system limitations. TAF validation, publication, and met- 

ric reporting facilities are not integrated in the current system. The terms TAF, 

terminal forecast, and forecast axe interchangeable in this discussion. 

15 



AFWA/XP is currently tasked with the responsibility for enabling auto- 

mated metric facilities and is therefore sponsoring research into methods that 

would achieve solutions to these problems. The Electronic Systems Center, Air 

Force Weather Systems (ESC/ACW) drafted a System Requirements Document 

(SRD) 2 to help AFW achieve business solutions to a wide array of information 

system and data processing problems [1). The SRD outlines the specific hard- 

ware, software, and interoperability standards that ESC/ACW believes will 

evolve current AFW information systems toward enabling technologies like 

CORBA, the distributed object platform addressed and implemented in this ef- 

fort. 

1.2 Problem Discussion 

A major reason for the inefficient TAF process is current forecast entry 

computer systems cannot communicate directly with backend systems used to 

store and track observation trends for TAF metrics collection. Therefore, a glob- 

ally integrated open architecture should be at the heart of the AFW reengineering 

effort [1]. For users to have confidence in the collected metrics though, the issue 

of forecast confidence using data validation techniques must also be addressed. 

Currently, no automated front-end quality control (QC) is conducted on any AFW 

weather product. The Automated Weather Distribution System (AWDS), which 

currently produces weather reports at the Weather Flight (WF), has no QC capa- 

2 The ESC/AFW Systems Requirement Document is a living document outlining AFW information system evolution. 
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bility. This means that forecasts with typographical errors are submitted into the 

global network. 

TAF errors are currently trapped at AFWA, so every TAF (correct or in- 

correct) is transmitted to AFWA for validation. A problem with this type of back- 

end QC develops when AFWA has to process many errors, usually during 

weather events when forecasters are extremely busy. During these time periods, 

AFWA rejects a higher number of forecasts and these rejected forecasts are not 

included in TAF accuracy metrics. This leads to the TAF accuracy metric report- 

ing better-than-actual results for the time period with high rejection rates. For 

automated metric collection to become feasible, front-end forecast validation be- 

comes a critical component in the overall distributed system design. 

The distributed object system must integrate QC and provide validation 

facilities for TAF submissions, alerting the weather observer about data discrep- 

ancies before TAF transmission by comparing the submitted TAF to site observa- 

tion trend data. The distributed object system must also provide collection facili- 

ties to report TAF/observation format and accuracy metrics on submitted 

weather data. This research addresses the issues of data validation and collec- 

tion as they apply to the TFMS, and distributed systems in general. 

1.2.1 Current Forecast Generation [46] 

Figure 2 presents a high-level view of the TAF generation process. When 

a forecaster produces a TAF, typically another person checks the TAF for errors. 

17 



No automatic QC is performed. When the forecaster sends the TAF, the local da- 

tabase is updated. Typically, forecasts and observations are stored for 24 hours. 

The original idea was to store the forecast for validation. In practice, forecasts 

are rarely re-examined unless errors are reported [46]. 

Weather Flight AFWA 

WFTAF 
(AWDS) 

T 

Local 
Database 

(24 Houis) 

QC Report 

Distribution 

~1 
Rejected 
Reports 

(Format Errors) 

Worldwide 
Weather Network 

Other 

Feedback 

Figure 2: Current TAF generation [46] 

As shown in Figure 2, errors are currently trapped at AFWA. If errors are 

detected, the offending TAF is rejected. Once the TAF is processed by AFWA, a 

copy is returned to the WF, and stored for future reference. 

1.2.2 Architectural Discussion [1] 

Currently, AFW is undergoing a comprehensive system restructuring. 

Under the new design, forecast responsibility shifts from an individual WF to an 

Operational Weather Squadron (OWS) servicing a particular geographic region. 

Because forecast responsibility is now an OWS function, TAF data is entered into 

the distributed system at an OWS. The OWS originates the processing and stor- 

18 



age of local weather model and forecast data, serving as regional weather proc- 

essing centers. The OWS also has the capability to initiate transactions and other 

coordination activities with AFWA and another OWS. OWS database systems 

have the capability to perform both high-speed loading of data sent from AFWA, 

and immediate update of individual data items sent via a DBMS synchronizer or 

replication facility. 

AFWA basically serves a data warehouse function in the system. AFWA 

systems have the capability to transmit, in near real-time, new observation data 

to an OWS, and conversely, an OWS can transfer new observation data to 

AFWA. Network connectivity within the AFWA, OWS, Weather Flight (WF), 

and Detachment levels are typically LAN-grade Ethernet topologies while long- 

haul connectivity between these levels is Tl-grade (1.544Mbps) or T3-grade 

(45Mbps) X.25 packet switching topologies. 

1.3 Research Goals 

First, this effort unifies traditional software engineering techniques, e.g. 

structured and object-oriented, to effectively develop a suitable design method- 

ology for large-scale distributed software systems [4, 5, 6, 16, and 17]. Second, 

principles such as component reuse and architectural development through the 

use of design patterns are thoroughly investigated and applied where appropri- 

ate [13 and 14]. Third, this research builds upon previous AFIT efforts in distrib- 

uted object computing [2].  Finally, this effort provides AFW with a thoroughly 
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researched document describing 1) a methodology to design an evolutionary dis- 

tributed system, 2) an experimental CORBA application that addresses TAF vali- 

dation and publication distributed issues, and 3) a methodology to select an ap- 

propriate CORBA implementation by using performance benchmarks. 

1.4 Specific Objectives 

The principal goal of this investigation is providing AFW an appropriate 

distributed system design in terms of cost/performance for the given environ- 

ment in which the system must operate and for the given problem (§1.2 Problem 

Discussion, §1.3 Research Goals). Specifically, the characteristics of and the con- 

siderations for adopting a component-based architecture within an N-tier dis- 

tributed system environment are addressed. Specific objectives (research mile- 

stones) to achieve this principal goal: 

1. Investigate distributed object systems - principles, benefits, and limitations. 

2. Investigate distributed data systems — architectures, protocols, and transac- 

tions. Determine design trade-offs. 

3. Investigate CORBA application development. 

4. Determine forecast validation and metric processing data, algorithm, and dis- 

tributed characteristics. 

5. Determine a suitable system concept model by analyzing the TAF problem 

requirements. 
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6. Develop a design methodology for the TFMS based on the requirements de- 

termined in step 5. 

7. Using the methodology developed in step six, design a component-based dis- 

tributed environment for the problem evaluated in step five. 

8. Design CORBA performance benchmarks and experiments to test the envi- 

ronment developed in step seven. 

9. Implement the environment and run experiments. 

10. Evaluate using the designed measurement criteria from step eight. 

1.5 Research Significance 

This investigation provides a design methodology for developing large, 

heterogeneous distributed object systems. While this discussion specifically ad- 

dresses CORBA system development, the methodology is easily mapped onto 

any distributed architecture, e.g. DCOM [18]. Software validation issues are ad- 

dressed during system design, contributing to overall design correctness. Along 

with providing a sound distributed system development methodology, this re- 

search also furthers AFIT's parallel and distributed object system research by 

addressing CORBA system development, experimentation, and performance 

benchmarking. 
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1.6 Assumptions, Scope, and Constraints 

As pointed out previously, the SRD is a living document designed to help 

AFW achieve business solutions to a wide array of information system and data 

processing problems. This effort focuses solely on investigating AFW TAF vali- 

dation, distribution, and metrics processing in an open, distributed environment. 

The ESC/ACW baseline architecture is a constraint for forecast validation and 

metrics processing design. 

An essential AFW requirement is to use technologies that permit incre- 

mental system evolution without system-wide consequences — in other words, 

AFW requires a scalable architecture. The AFW architecture uses component- 

based and N-tier client/server technologies to achieve the desired enterprise 

scalability. Accordingly, the AFW system will be implemented as a set of 

CORBA components that interoperate through shared interfaces. The AFW archi- 

tecture is an integration of both general purpose and TAF problem-specific com- 

ponents and needs to also support various legacy databases during the evolution 

to an open, component-based architecture. The SRD also specifies that hardware 

installations are satisfied with commercial off-the-shelf (COTS) system compo- 

nents. Most of the systems that ESC develops fall into this category. Software 

installations are hosted by a UNIX or NT platform. 
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1.7 Summary 

This chapter provides a general description of the problem being investi- 

gated by this research effort. Research goals, objectives, significance, and impact 

are also discussed in great detail. Assumptions and constraints are outlined as 

they apply to this particular problem. 

The rest of the report is organized as follows: Chapter two provides back- 

ground discussions on technical subjects such as CORBA and distributed data- 

base systems. Chapters three through five addresses design methodology, 

measurement methodology, and implementation for an experimental Terminal 

Forecast Management System (TFMS). The TFMS is a prototype CORBA appli- 

cation developed throughout this investigation to collect data on distributed de- 

sign issues; i.e. the TFMS is not a production-quality software system. Chapters 

six and seven concern gathering experimental data, analyzing experimental data, 

and drawing appropriate conclusions based on these empirical experimental re- 

sults. 
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II. Distributed Object Systems 

If we knew what it was we were doing, it would not be called research, would it? — Al- 
bert Einstein 

2.1 Introduction 

This chapter discusses the theoretical background material applicable to- 

ward understanding the issues and complexities involved with distributed object 

and database systems. The typical distributed object environment is introduced 

to show some of the issues these systems must address and overcome when het- 

erogeneous computer systems must communicate. Distributed object para- 

digms, distributed database systems, and distributed object management and 

performance issues are then presented and discussed. 

2.2 The Distributed Object Environment 

Distributed object system environments are a very complex intertwining 

of heterogeneous hardware, software, and operating system platforms coupled 

with communication networks of varying protocols and capacities. Figure 3 

shows an architecture that distributed system engineers would typically encoun- 

ter when developing distributed object applications. 
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Figure 3: A Distributed Object System Environment 

As shown in Figure 3, a client can operate using a number of different ma- 

chine architectures, e.g. Pentium or SPARC, while running completely different 

operating systems, e.g. Windows NT or SunOS. Servers operate using heteroge- 

neous hardware and software as well, but usually contain more powerful or 

symmetrical processing capabilities coupled with increased disk and memory 

capacities to handle many client requests in a completely decoupled, shared- 

nothing architecture (§2.5.1 Architectures). Different hardware platforms pos- 

sess different instruction set architectures (ISA) with either little endian or big 

endian byte ordering formats; e.g. Intel uses little endian while SPARC uses big 

endian [12 and 55]. To shield the application developer from these portability 

issues, distributed application development environments provide tools such as 

Interface Definition Language (IDL) compilers to generate the necessary code for 

parameter marshaling and demarshaling [34]. Different operating system plat- 

forms possess different thread models, user interfaces (Text/GUI), and system 
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call interfaces (Win32/POSIX) that present many issues for porting distributed 

applications from one platform to another [21 and 50]. 

A heterogeneous communications network of LANs, MANs, and WANs 

(Ethernet, FDDI, ATM, and Tl) connects clients and servers. The network com- 

munications protocols used may be based on any of the WAN or LAN protocol 

families such as TCP/IP, IPX/SPX (Novell), and X.25. All these protocol families 

provide end-to-end communication, but they also possess different characteris- 

tics that complicate software interoperability [60]. Network characteristics will 

greatly affect the communication time in the distributed object system. On the 

LAN side, network device (hubs/switches) characteristics such as shared or 

switched bandwidth greatly affect communication time. On the WAN side, net- 

work bandwidth (100Mbps LAN versus 1.54Mbps WAN), communication la- 

tency, delays caused by buffering interconnection device mismatches, e.g. gate- 

way connections from high-speed LANs to the WAN, and fragmenta- 

tion/reassembly operations between different protocol families all greatly affect 

distributed application performance [10 and 11]. 

With all of these complexities, distributed object systems attempt to ad- 

dress the following issues: 

1.   Location Transparency: The client does not know what server hosts a particu- 

lar target object. The server/object is free to move to any location [21] „ 
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2. Language Independence: The client does not care what implementation lan- 

guage the server uses. The language can change without affecting clients. 

3. Implementation Independence: The client treats the target object as a black 

box, i.e. the client possesses no knowledge of the target object's implementa- 

tion. In distributed object software engineering, it's absolutely critical to pro- 

gram to an interface, not an implementation [12]. 

4. Architecture Independence: Client is unaware of the server's underlying 

hardware architecture or ISA. 

5. Operating System Independence: Client is unaware of the server's operating 

system, use of threads or event loops. 

6. Communication Independence: Client is unaware of the transport and proto- 

cols used for method invocation. ORBs transparently connect clients to serv- 

ers (§2.3.1 Common Object Request Broker Architecture (CORBA)). 

2.3 Distributed Object Paradigms 

Distributed object system architectures are a development evolution 

rooted from previous forms of software development methodologies: modular, 

functional, client/server, and most notably — object-oriented. In a pure object- 

oriented approach, reuse and inheritance is restricted to the source code level. If 

a developer changes a class definition, she would have to change and recompile 

the entire application. The idea behind components is to promote the binary re- 

use of software. In a distributed object system, the component is the unit of pack- 
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aging, distribution, maintenance, and development [17]. The component acts as 

a service provider, responding to messages sent to its published interface. Inter- 

face implementations are hidden from clients, so components may change inter- 

nally, provided that their interface definition is maintained. 

Since components are standalone objects that can plug-and-play across 

network, application, and language boundaries, they also provide fine, medium, 

and course grain parallelism capabilities in the distributed architecture. By sim- 

ply migrating or replicating components or objects to appropriate network 

nodes, we provide performance, fault tolerance, and load-balancing capabilities 

that didn't previously exist. The goal of component-based development is to 

provide software users and developers the same level of application interopera- 

bility that is currently available to users and developers of electronic parts such 

as integrated circuits [8]. In this section, the two leading distributed object sys- 

tems are explored: the Common Object Request Broker Architecture (CORBA) 

and the Distributed Component Object Model (DCOM). The Java Remote 

Method Invocation (RMI) and Enterprise JavaBeans models are not discussed 

due to their lack of language independence support. 

2.3.1 Common Object Request Broker Architecture (CORBA) 

To support very large, complex distributed object applications, it's desir- 

able to specify an infrastructure that supports the handling of common opera- 

tions such as object lifecycles, identification, interface definitions, and intercom- 
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munication. The Object Management Group (OMG) was formed to reduce com- 

plexity and lower development cost and time. The OMG is an international 

trade organization incorporated as a nonprofit organization in the United States. 

OMG is currently comprised of over 800 corporate members and the number 

gets larger every year [21]. 

Metadata is a crucial ingredient when developing flexible distributed sys- 

tems. Metadata provides a distributed system with self-describing, dynamic, 

and reconfigurable capabilities. Using metadata, components discover each 

other at runtime, further enhancing interoperability [8]. The OMG Interface Defi- 

nition Language (IDL) provides the "glue", connecting objects in a standard way 

by defining the interfaces to CORBA objects. Because IDL is a declarative lan- 

guage, its sole purpose is to allow object interfaces to be defined in a manner en- 

tirely independent of any particular programming language [21]. This allows 

applications implemented in different programming languages to interoperate; 

this language neutrality is critical to CORBA supporting heterogeneous envi- 

ronments [8, 21, and 26]. Language mappings specify how IDL is transformed 

into a particular programming language, e.g. in C++, interfaces transform to 

classes and in Java, interfaces transform to public interfaces. 

Figure 4 shows the components an ORB uses to transmit requests trans- 

parently from a client to a particular object implementation (servant). When the 

client invokes an operation on a servant, CORBA's runtime infrastructure, the 
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ORB Core, delivers the request for the client. For remote servants, the ORB Core 

uses the Internet Inter-ORB (HOP) communication protocol to deliver the request 

and return the servant's response (if any). The ORB Interface is a CORBA- 

compliant standard interface written in IDL that provides standard operations 

such as ORB initialization and shutdown. 
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Figure 4: CORBA Specification 

IDL compilers generate IDL stubs and skeletons (proxies). IDL stubs and 

skeletons are the "glue" in CORBA, holding clients and servants together. IDL 

Stubs provide strongly typed interfaces to clients that hide many low-level net- 

working details, e.g. marshaling data into a packet-level format. IDL skeletons 

perform the server-side analog by unpacking the packet-level format into typed 

data for the application. IDL compilers provide language transparency by trans- 

forming OMG IDL definitions into implementation languages, e.g. C++ and Java. 

Besides providing language transparency, IDL compilers also eliminate many 
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sources of network programming errors while also providing optimization op- 

portunity [56]. 

The Dynamic Invocation Interface (DII) is an alternative to IDL stubs for 

clients to "discover" and invoke objects. While static stubs provide an object 

type-specific API, DII provides a generic mechanism for constructing requests at 

run time. The interface repository (not shown), a client's object definition data- 

base of metadata, allows some measure of type checking to ensure that a target 

object can support the request made by the client. 

The Dynamic Skeleton Interface (DSI) is the server-side counterpart of DII. 

While IDL skeletons invoke specific operations in the object implementation, DSI 

defers this processing to the object implementation repository. This is useful for 

developing bridges and other mechanisms to support inter-ORB interoperation. 

The implementation repository is the server analogue to the interface repository; 

this is the server-side object definition database. 

The Object Adapter (OA) associates a servant with an ORB, demultiplexes 

requests, and dispatches the appropriate operation upcall on a particular servant. 

The OA also provides extensibility of a CORBA-compliant ORB to integrate al- 

ternative object technologies into the OMA. For example, adapters may be de- 

veloped to allow remote access to objects that are stored in an object-oriented da- 

tabase. Each CORBA-compliant ORB must support a specific object adapter 

called the basic object adapter (BOA).  CORBA release 2.2 specifies the portable 
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object adapter (POA), which removed server-side portability problems that ex- 

isted in the BOA [21]. CORBA is part of the Object Management Architecture 

(OMA). More information on the OMA can be found in Appendix A. 

2.3.2 Distributed Component Object Model (DCOM) 

DCOM is Microsoft's proprietary standard that extends the COM model 

allowing objects to dynamically interact across a network. DCOM simply re- 

places the standard COM inter-process communication by a network protocol. 

The terms COM and DCOM are used interchangeably, but COM more ade- 

quately describes a single machine application, while DCOM describes a multi- 

computer (network) application. As with the OMA, COM objects expose their 

services using an interface defined by an IDL. 

COM Components are created as executable code, distributed as Win32 

dynamic link libraries (DLLs) or executables (EXEs). COM components support 

many object-oriented characteristics such as polymorphism, encapsulation and 

interface inheritance, but do not support implementation inheritance. Binary re- 

use is accomplished using containment and aggregation facilities. COM compo- 

nents are usually represented as shown in Figure 5. COM components are lan- 

guage independent and the library API provides the common component man- 

agement services. 

All COM components are registered in the Microsoft Windows registry. 

The registry serves as a local repository of object definitions that the client uses to 
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lookup interfaces (paths) to objects. All interfaces have a unique identifier num- 

ber called an IID or interface ID. Object packages have a unique identifier num- 

ber called a CLSID or class ID. These IDs are Global Unique Identifiers (GUID), 

generated by an algorithm using the network board physical address, generation 

time, and other variables to ensure the generated ID is unique [17]. 

The client application uses COM objects through COM interfaces. During 

the first request (or at a time specified by the client), the server object is activated 

and the requested interface is sent back to the client. All COM interfaces are de- 

rived from a standard interface called IUnknown. An object can implement one 

or more interfaces using the containment and aggregation facilities as mentioned 

above. Two types of server objects exist in COM. An in-process object is pack- 

aged as a DLL and executes inside the client's address space while an out-of- 

process object is packaged as an EXE, capable of residing on the same machine in 

a different address space, or in a different machine altogether. 
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Figure 5: DCOM overall architecture [17] 
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Clients access server objects using a part of the COM infrastructure called 

a proxy-stub pair. The proxy-stub pair's purpose is to transfer parameters and 

return values across different address spaces or physical machines - a process 

called marshaling [12]. 

All COM calls are synchronous, so scalability becomes an issue for large 

applications. To circumvent this shortcoming, Microsoft provides asynchronous 

capabilities to COM applications by using an additional middleware platform — 

Microsoft Message Queue Server (MSMQ). COM+, the ensuing COM release, 

will integrate MSMQ into the core COM architecture making asynchronous 

COM calls a built-in architectural feature for COM+ application developers. 

2.4 Distributed Object Security 

Distributed application development is a very complex undertaking with 

many considerations. Although physical limitations such as machine ISA, re- 

mote call dispatch rate, and network utilization issues require careful considera- 

tion, new issues related to security are raised as well. Clients and components 

need to communicate with each other securely. Since many component opera- 

tions are now physically accessible by anyone with network access, this raises 

many issues of privacy and knowing that a given client or component is author- 

ized to use published operations. This section looks at distributed security issues 

using Kerberos as a case study security service. 
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2.4.1 Security Issues 

Distributed systems are more vulnerable to security incidents than tradi- 

tional client/server applications. In a distributed application, components can't 

trust any other component in the distributed system to protect its resources from 

unauthorized access. Even if components were secure, the communication net- 

work is highly accessible to monitoring devices recording network traffic, and 

possibly introducing malicious code into the distributed system. The following 

issues highlight the difficulties in distributed object system security [8]: 

1. Distributed objects may be both a client and a server: Typically, servers are 

trusted and clients are not trusted. Components are not easily placed in the 

client or server category, since a given component may perform both roles. 

How is a component trusted? 

2. Distributed objects continually evolve: An object implementation, e.g. a me- 

diator, may delegate some processing tasks to runtime objects; this imple- 

mentation may change over time, as the component evolves. How do author- 

ized clients know these runtime objects are secure? 

3. Distributed objects are dynamic and can scale enormously: Every component 

is capable of becoming a server, so how are access rights managed for mil- 

lions of component servers? 
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4. Distributed objects can be just about anything: There are probably as many 

different object designs as there are software designers. How do we know a 

component is not an imposter? 

These are just a few concerns that IT professionals must address when 

placing their organization's valuable data on the wire. Without security support 

from a distributed platform, each application is forced to implement its own se- 

curity mechanisms. The application would typically have to validate user cre- 

dentials against a user database and return some security identifier, i.e. token, for 

use in future method calls. All subsequent secure method calls require the client 

to pass this security token. This approach works fine for a single distributed ap- 

plication, but how do different applications interoperate? Moving the security 

controls into a security service solves this problem. 

2.4.2 Kerberos Authentication Service 

The Kerberos protocol basically consists of three entities: a client (princi- 

pal), a server, and a trusted third party to mediate between them. A principal is a 

user or process that requires secure communication [12]. Each principle is 

uniquely named by a principal number [74]. The trusted intermediary in this 

protocol is the Kerberos authentication server, a.k.a. the Key Distribution Center 

(KDC) or Ticket Granting Server (TGS). Kerberos authentication provides a 

means of verifying the identities of clients and servers, i.e. a principal [12]. Ker- 

beros performs authentication using a secret key cryptosystem.   A secret key 

36 



cryptosystem uses a single key for both encryption and decryption; this key is 

called a session key in the Kerberos protocol [74]. Clients prove their identity by 

presenting tickets and authenticators to servers [12 and 74]. A ticket is an encrypted 

data structure issued by the KDC or TGS that identifies a principal and session 

key [74]. An authenticator is an encrypted data structure that proves a principal 

actually possesses the session key. The Kerberos Version 5 protocol is imple- 

mented for a variety of systems, most notably Microsoft Windows 2000, where 

it's used as an authentication service for distributed system security [75]. The 

Kerberos RFC basically addresses three security services: 1) authentication, 2) 

data integrity, and 3) data privacy. 

Authentication [74]: The Kerberos authentication process is shown in Fig- 

ure 6. The notation generally used to indicate encryption is Cyphertext = {Plain- 

text} Key [12]. In Figure 6, all security components are spelled out to prevent 

confusion. First, the client sends a request to the KDC by identifying itself, pre- 

senting a nonce (message identifier), and requesting a ticket for a given server 

process [12 and 74]. The KDC creates a random encryption key (session key) and 

generates a ticket for the requested server process. The KDC encrypts the session 

key and nonce using the client's secret key. The KDC encrypts the ticket, which 

consists of the session key, authorization data, principal name, Kerberos realm, 

and valid time period (to name a few) using the server process' secret key [75]. 
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Upon receipt, the client caches the ticket, and decrypts the session key for 

future use. The client generates an authenticator that contains a current time- 

stamp, then encrypts the authenticator using the session key. The client then 

transmits the ticket and the newly generated authenticator to the server process. 

The server decrypts the ticket using its secret key, and extracts the identity of the 

client and the session key from the ticket. 

(    KDC     J 

Kerberos Authentication 

1. Client -> KDC: Client, Server, nonce 
2. KDC-> Client: [Session Key, nonce] Client Key, [Ticket] Server Key 

3. Client-> Server: [Authenticator] Session Key, [Ticket] Server Key 

Client      W    Server 

Figure 6: Kerberos Authentication 

To authenticate the client, the server process decrypts the authenticator 

using the extracted session key, and verifies the timestamp is current. Successful 

verification of the authenticator proves that the client does indeed possess the ses- 

sion key, because the client could only obtain the session key by successfully de- 

crypting the session key sent from the KDC with its very own key. The session 

key is optionally used to authenticate the server process (mutual authentication) 

by requiring the server process to send a fresh message encrypted using the ses- 

sion key to prove its identity to the client. It may also be used to encrypt further 
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communication between the two parties or to exchange a separate sub-session 

key to be used to encrypt further communication. 

The Kerberos protocol is also designed to operate across organizational 

boundaries. A client in one organization can be authenticated to a server process 

in another organization. Each Kerberos organization establishes a realm and au- 

thentication is performed using an inter-realm key [74]. The exchange of inter- 

realm keys registers the ticket-granting service of each realm as a principal in the 

other realm. A client is then able to obtain a ticket-granting ticket for the remote 

realm's ticket-granting service from its local realm. Tickets issued by the remote 

ticket-granting service will indicate to the server process that the client was au- 

thenticated from another realm. 

Data Integrity and Data Privacy: Message integrity between principals 

can also be guaranteed using the session key. This approach provides replay at- 

tack detection and message stream modification attacks. It is accomplished by 

generating and transmitting a collision-proof checksum, i.e. a hash or digest 

function, of the client's message, keyed with the session key [75]. Privacy and in- 

tegrity of the messages exchanged between principals can be secured by encrypt- 

ing the data to be passed using the session key passed in the ticket. 

2.5 Distributed Object Storage 

Database systems play an important role in distributed object system de- 

sign. At some point in a distributed architecture, data will be persistently stored. 
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The way data is created, read, or updated can greatly impact performance and 

overall distributed system design. This section provides a brief discussion on the 

major areas designers need to consider. 

2.5.1 Architectures 

There are three typical architectures used for parallel and distributed da- 

tabase systems as shown in Figure 7 [20]. Parallel database machines typically use 

the shared-everything or shared-disk layouts as the prominent feature is one of 

tight hardware coupling while a distributed database typically employs the 

shared-nothing architecture, as the nodes are loosely coupled or physically sepa- 

rated. 
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Figure 7: Parallel and Distributed Database Architectures 

The most common architecture for small to mid-sized parallel database 

machines is symmetric multiprocessing (SMP), commonly called shared-everything 
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where multiple processors are used in parallel. The most important drawback to 

this architecture is the von Neumann bottleneck: CPU to memory bus contention. 

The opposite of shared-everything is shared-nothing, which has been the 

architecture of choice for designers of highly scalable parallel database systems 

[20]. In this system, each node is independent, with its own CPU(s), memory, 

and disk. This approach eliminates the von Neumann bottleneck, but it requires 

complex data fragmentation and allocation Schemas in order to achieve optimal 

performance [28]. 

Combining these two extreme architectures into a design that takes ad- 

vantages from both have resulted in the shared-disk architecture, somewhat 

similar to shared-nothing, except centralized disk farms are used for storing data. 

This approach eliminates almost all data partitioning problems associated with 

the shared-nothing architecture, but possesses the scalability problems associated 

with contention for a centralized resource - in this case, the disk farm [12 and 

20]. New clustering products such as Microsoft Cluster Server for Windows NT 

have "reincarnated" shared-disk architectures, which currently found a market 

niche providing failover services for mission critical business applications [35]. 

2.5.2 Transactions 

Transactions have four properties (commonly referred to as ACID proper- 

ties) [9]: 

1.   Atomicity: Transactions are atomic (all or nothing). 
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2. Consistency: Transactions transform the database from one consistent 

(known) state into another consistent state. 

3. Isolation: Even though there are many transactions running concurrently, 

updates are concealed from other transactions until a commit occurs. 

4. Durability: Once a transaction commits, its updates are never lost. 

Different sorts of parallelism that one can consider for distributed transac- 

tions: 

1. Task spreading: A task is divided into a number of similar subtasks, which exe- 

cute on different nodes. This requires a coordinating process that hands out 

subtasks, and then collects and combines the results. 

2. Pipeline: A task is decomposed into subtasks, which execute consecutively in 

the same datastream [38]. Subtasks are assigned to different processes, each 

receiving input from a predecessor subtask, and each sending a result to a 

successor subtask. Every subtask is activated upon receiving its first data. If 

the last subtask gets its first input before the first subtask sends its last output, 

we will have all processors working in parallel. 

Task spreading and pipelining techniques are used in different ways for dis- 

tributed transaction or query processing: 

1.  Intra-operator parallelism lends itself to pipelining since one operation in a 

query tree is distributed over more than one processor (same data). 
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2. Inter-operator parallelism lends itself to task spreading since many operations in 

a query tree may be executed on different nodes concurrently, a.k.a. inde- 

pendent parallelism [38]. 

2.5.3 Serializability 

Centralized synchronization mechanisms such as the two-phase commit 

protocol (§2.5.4 Recovery Protocols) are extensions of centralized control meth- 

odologies applied to a distributed environment where the notion of serializability 

is the generally accepted criterion for correctness. Serializability refers to a set of 

interleaved transactions, which produce the same result as executing the transac- 

tions individually, i.e. serial and interleaved schedules are equivalent [9]. 

The basic serializability concept is the same for a distributed environment, 

but with the added complexity imposed by transaction distribution. For distrib- 

uted transactions, we require local serializability of all local schedules and global 

serializability for all global schedules, i.e. all sub-transactions of global transac- 

tions appear in the same order in the equivalent serial schedule at all sites [28]. 

For example, if we have two global transactions Tl and T2, each having two sub- 

transactions at sites A and B, then we can say T (Al) and T (Bl) are sub- 

transactions of global transaction Tl; and T (A2) and T (B2) are sub-transactions 

of global transaction T2. Distributed serializability means we have local ordering 

at sites A and B where T (Al) < T (A2) and T (Bl) < T (B2) and global ordering for 

transactions Tl and T2 where Tl < T2 for sites A and B. 
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2.5.4 Recovery Protocols 

An important goal in distributed data systems is that a failure of one site 

should not affect the processing in another site, i.e. operational sites should not 

be left blocked, waiting on a failed or otherwise unresponsive site [9 and 28]. In 

this section, two common protocols suitable for use in a distributed environment 

are discussed: two-phase commit and three-phase commit. The following discus- 

sion assumes a global or Distributed Transaction Coordinator (DTC) exists and 

the DTC possesses knowledge of transaction agents. Transaction agents (a.k.a. 

brokers or transaction monitors) are the other sites participating in the transaction. 

The two-phase commit protocol ensures that the outcome of a transaction 

is consistent across all transaction managers (TM) participating in the transac- 

tion. As the name suggests, the protocol operates in two distinct phases to ulti- 

mately commit or abort a transaction. Figure 8 illustrates the two-phase opera- 

tion for a commit. The two-phase commit is a blocking protocol. Phase one evalu- 

ates the condition of each resource manager (RM) to perform the transaction. 

The DTC communicates with each local TM to determine if the local RM is pre- 

pared to commit the transaction. For the local TM to return a prepared message, 

the local RM must guarantee that it can commit the update i.e. the RM must 

force-write all log entries for local resources used by the global transaction [9]. 

Each local TM responds to the DTC that it can or cannot guarantee its results. 
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Phase One: 
1. Coordinator says prepare to commit. 
2. Resource manager says commit/abort 

If resource manager says "commit", 
it blocks waiting for the global commit 

Coordinator 

Phase Two: 
1 . If all "Yes", coordinator sends commit 
2. If one or more "No", abort. 

Resource Manager 

Figure 8: Two-Phase Commit Diagram 

Phase two completes the transaction. When the DTC receives replies from 

each local TM, it force-writes an entry to its own physical log, recording its deci- 

sion regarding the transaction [9]. If all participants agree, the decision is com- 

mit. If at least one participant does not agree, the decision is abort. In either case, 

the global coordinator informs all participants of the decision and all participants 

must commit or rollback the transaction as instructed. 

If an agent site should fail during the transaction, its restart procedure will 

look for the decision record in the DTC's log. If the site finds a commit decision, 

then the local TM can perform a forward recovery by redoing previously written 

transaction work. If it finds an abort or no decision, then the local TM can per- 

form a backward recovery by undoing state changes to restore the local database 

to its state prior to the transaction. If the DTC fails, a termination protocol must 

be invoked. The simplest termination protocol is for the participants to wait for 
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the DTC to come back up or time out, whichever is sooner. A more realistic ap- 

proach known as the cooperative termination protocol modifies the standard 

two-phase algorithm. The cooperative termination protocol requires the DTC to 

send a list of transaction participants to all agents. If the DTC fails, agents can 

contact other agents to determine if the DTC made a decision to complete the 

transaction. If the DTC failed before making a decision, then they can elect a new 

coordinator [28]. Although this method reduces the chances of blocking, block- 

ing is still possible. 

An alternative non-blocking protocol to the two-phase commit is the three- 

phase commit protocol. To arrive at the three-phase protocol, a pre-commit phase 

is added to the two-phase algorithm at the point where the participants vote and 

the global coordinator sends its decision regarding either a global commit or 

abort. 

In the pre-commit phase, once the DTC receives all participant commit or 

abort votes, it sends a global pre-commit message, which tells all participants 

that they will definitely commit or rollback in due course. Each participant ac- 

knowledges receipt of the pre-commit message and continues local processing. 

Once the coordinator has received all acknowledgements, it then issues the 

global commit or abort. The important point to this algorithm is that all opera- 

tional agents are informed of the global decision before the global commit or abort 
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instruction is issued, so agent sites are not blocked waiting on this global deci- 

sion and therefore act independently in the event of failure [28]. 

2.5.5 Object-Relational Data Mapping 

This section provides a background that considers the issue of architecting 

object-oriented applications for high performance with relational databases. Key 

ideas in this section are the optimization of data objects to relational table repre- 

sentations and data object cache management using the mediator design pattern 

[13]. While this section primarily explores the mapping between business object 

instances and relational tuples using the mediator pattern, the basic idea of pro- 

viding a managed cache atop a RDBMS to improve performance directly relates 

to forecast availability and performance in the TFMS application. 

Figure 9 shows an object-relational application that provides an OO inter- 

face to underlying relational data [41]. Applications retrieve and store data using 

the object cache interface while a cache manager manages cache contents based 

on a collection query predicate [43]. 

A well-managed object-relational cache application addresses two major 

components: 

1. Object-Relational Mediator(s): The mediator uses an adapter design pattern to 

map objects to relational tuples and vice versa [13, 41, and 43]. Business ob- 

jects are managed in a shared cache on behalf of several applications. The 

shared cache contents are established using a collection predicate, which 
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specifies collection membership [43]. Tuples in the RDBMS are mapped to 

object instances and any updates to business objects are mapped to update 

operations on the RDBMS. 

Object-relational mappini 

RDBMS RDBMS RDBMS 

Figure 9: Object Cache [41] 

2. Performance Optimizations: This component realizes that we must choose 

appropriate object to relational mappings, and also take advantage of rela- 

tional database query and performance optimizations. Items such as stored 

procedures and batch operations need to be considered when designing this 

interface, as every advantage needs to be exploited. 

As Figure 10 shows, each object instance maps to a corresponding rela- 

tional table. A separate table is used for each object type. A simple way to map 

one-to-one and one-to-many relationships is to use an embedded foreign key 

field for each object and/or object collection relationship. The other mapping 

shows how a lookup table is employed to map many-to-many relationships. Since 

a cache lookup is much faster than a disk access, the goal when using an object 
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cache is similar to operating system paging structures, where you try to maxi- 

mize the cache hit ratio to improve performance [11]. 
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Figure 10: Object-Tuple Mapping [41] 

2.6 Summary 

This chapter reviews CORBA and DCOM, the two predominant distrib- 

uted object paradigms. An introduction to distributed database architectures, 

transactions, and recovery protocols is also presented along with object-relational 

mapping performance issues. 
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III. Distributed System Design 

There is no silver bullet. - F. Brooks 

3.1 Introduction 

The following characteristics have been identified as key ingredients to- 

ward developing large, distributed component software systems, and when con- 

sistently applied, produce good development results [3,4,5, and 6]: 

1. Use Case Driven (transaction - oriented) 

2. Architecturally Focused 

3. Documentation-Based 

4. Evolutionary Process Model: Incremental, Iterative, and Integrative 

The lifecycle process used in this investigation possesses these four char- 

acteristics. The terms use case scenario, transaction model, and use case are used in- 

terchangeably throughout this section. The software development lifecycle cho- 

sen for this investigation: 

1. Requirement Analysis captures the business model and its processes while 

Analysis Modeling specifies these requirements using different views, e.g. ob- 

ject/entity-relationship models, data flow diagrams, interaction/state dia- 

grams. These two phases are combined into a Software Requirements Specifica- 

tion in this report. 

2. Design Modeling maps the analysis model to a software architecture. In this 

report, this phase is referred to as Distributed Object System Design. 
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3. Implementation Modeling maps the software architecture to the processing en- 

vironment or hardware architecture. 

4. Coding applies development tools to the implementation model. 

5. Quality Assurance, testing, and experimentation validates algorithm selection 

and code functionality. 

6. Evolution and Maintenance is incremental, iterative, and integrative. 

This chapter addresses software requirement specification and distributed 

object system design. 

3.2 Motivation 

Organizations that bind their business functionality to a specific technical 

implementation are faced with the prospect of having to continually re-engineer 

basic business rules as the system evolves. By using Object-Oriented Software 

Engineering (OOSE) and modular software construction methods, business func- 

tionality is completely isolated from all underlying technical constructs. When 

these technical constructs are re-engineered for performance reasons or extended 

as part of normal system evolution, the business model presented to customers 

remains unaffected. The simple organizational architecture depicted in Figure 11 

coveys powerful OOSE/modularity principles and serves as a primary motiva- 

tion toward applying a modular, OO design methodology. 
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Figure 11: Organizational Architecture 

As Figure 11 illustrates, the business model provides an interface to reflect 

"what" organizational services and products are advertised to consumers. The 

technical architecture implements the organization's business model (interface) 

in a particular architectural environment, so it's an extension or derived from the 

business model [4]. This separation of interface from implementation is the key to 

minimizing implementation dependencies and maximizing reuse in object- 

oriented systems [13 and 14]. In distributed object systems, this separation of in- 

terface from implementation is strictly enforced in IDL (§2.3 Distributed Object 

Paradigms). Oddly enough, many OO methodologies don't emphasize this key 

principle in developing reusable OO systems [5, 6, and 29]. 

3.3 Proposed Forecast Generation 

Figure 12 shows a proposed AFW architecture using CORBA (§2.3.1 

Common Object Request Broker Architecture (CORBA)) as the distributed object 
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architecture. The TAF validation facility (QC) is now located at all OWS sites in- 

cluding AFWA (§1.2.1 Current Forecast Generation). Forecasts are validated 

upon entry into the global network and replicated to meet performance, availabil- 

ity, and AFW dissemination requirements IAW AFMAN 15-111 [67]. This archi- 

tecture follows a three-tier design methodology where clients (weather custom- 

ers and forecasters) form the user interface, application logic (TAF validation 

rules) form the middle-tier (application or web servers), and products (forecasts, 

observations, and statistics) form the data-tier (§5.3.1 N-Tier Topologies) [2, 4, 7, 

8,16,27, and 32]. 

Prepare   and   amend  forecasts 

Figure 12: Proposed Architecture 

Figure 13 shows a more detailed view of an OWS conforming to this de- 

sign methodology. The user interface may consist of thin-client customers, e.g. 

web browsers, and thick-client forecasters, e.g. Win32 applications. The middle- 

tier consists of business logic (TAF validation rules) located on application serv- 

ers.   The data-tier consists of TAF products accessible either through an object 
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cache or the underlying datastore. Many of the advantages obtained by using 

the N-tier approach are mentioned in the introduction, but the largest advan- 

tages concern resource scalability and configuration flexibility (§5.3.1 N-Tier To- 

pologies). 

ows 
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(Thick client- Forecasters/Observers) 

Application Server 
(Business Rules) 

Data Server 
(Object Cache) 

OWS Database 

User Interface 
(Thin client- Customers) 

(Thick client - Forecasters/Observers) 

Application Server 
(Business Rules) 

Data Server 
(Object Cache) 

AFWA Data Warehouse 

Figure 13: Proposed N-tier Architecture 

Well-defined distributed object systems permit you to add, delete, or mod- 

ify business rules (TAF validation rules) without affecting clients or any other 

component in the system. This is a very important consideration when develop- 

ing large distributed systems because functionality may be added incrementally 

[13 and 14]. Monitors (agents) can observe trend data and send instructions or 

alarms (react) if current conditions warrant an amend action. If an event channel 

is used, all OWS sites could register for these alarms and receive them automati- 

cally, providing additional real-time safety updates to TAF customers at their re- 

spective sites [21 and 32]. 
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In the proposed process, the OWS database contains forecast, observation, 

weather station, and statistical data. When a TAF is generated, the encoding and 

validation function is performed at the originating OWS, using AFW-defined en- 

coding instructions, MAJCOM-defined weather element category thresholds, and 

observation trend data for the particular station [46,59, and 68]. The TAF is then 

distributed by the originating OWS to meet near real-time performance and avail- 

ability requirements [67]. This research also addresses a suitable TAF replication 

facility (§5.4.2 Publication Transaction) for a CORBA environment. 

3.4 Software Requirements Specification 

Software requirement specification captures user requirements and trans- 

forms these requirements into a detailed description of the distributed software 

architecture. The system's information, functions, and behavior are analyzed 

and the system is partitioned accordingly [6]. Software testing and validation 

criteria are also developed during this phase to provide traceability to user re- 

quirements. System constraints, performance requirements, and architectural 

considerations (§1.2.2 Architectural Discussion, §1.6 Assumptions, Scope, and 

Constraints) were previously discussed and are not repeated. 

3.4.1 Business Description 

A business description describes how business services are provided. Is- 

sues affecting business products, customers, and processes are typically dis- 
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cussed, as this description is an essential input into the Information System 

Model (§3.4.2 Information System Model) [27]. 

3.4.1.1 Overall Description 

The TFMS offers terminal forecasting services to weather customers.   A 

terminal forecast consists of a concise statement of the expected meteorological 

conditions significant to aviation at a specific airport during a specified time pe- 

riod. Terminal forecasts are prepared, issued, and distributed every six hours 

and are valid for a 24-hour period [59]. Amendments to a given TAF are issued 

as needed. These scheduling requirements are needed to satisfy the United 

States Aviation Authority, the Federal Aviation Administration (FAA), and the 

International Civil Aviation Organization (ICAO). A given TAF is coded in a 

format based on World Meteorological Organization (WMO) aerodrome forecast 

code, FM 51, and Aviation Routine Weather Report (METAR) code for both do- 

mestic and international use [38 and 59]. 

The TFMS validates forecasts by comparing the forecasted weather to ac- 

tual weather observations, at specific times (usually hourly) during the valid pe- 

riod of the forecast. Forecast verification is the AFW term used to denote the 

feedback provided a weather analyst on how his forecast compares to actual 

weather [68]. In this report, the term validation is used instead of verification. In 

both the context of software testing and forecast verification, validation refers to 

the software functionality being traceable back to a specific user requirement [6]. 
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Several statistics are computed to provide the analyst feedback on her forecasting 

skill. 

3.4.1.2 Functional Description 

The TFMS consists of the following major application functions: 

1. Weather Analyst Management: This function is the client interface to the dis- 

tributed system. A weather analyst may perform the following actions: 

a. Submit a new, amended, or corrected forecast. 

b. Submit a new or corrected observation. 

c. View TAF accuracy reports for a given set of weather stations, weather 

elements, categories, and time period; i.e. day, month, quarter, or year. 

d. View TAF, observation, and statistical data that generated the TAF accu- 

racy report, i.e. computational source data. 

2. Terminal Forecast Validation Functions: The terminal forecast validation 

function validates all new, amended, or corrected TAF and observation data 

entered into the distributed system. Major functions: 

a. Accept TAF or observation data from weather analysts. 

b. Validate all TAF and observation weather entries for encoding format er- 

rors [59 and 67]. 

c. Validate all TAF weather elements using weather station trend data [46]. 

d. Update station trend data. 
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e. Return result of validation to the forecaster. If process fails for encoding 

or trend validation, provide the analyst with meaningful error (encoding) 

or warning (trend) information. If validation passed, publish the TAF. 

3. Terminal Forecast Publication Management: The TAF publication function 

distributes TAF, observation, and alarm data to meet system publication re- 

quirements. Major functions: 

a. Accept validated TAF and observation data. 

b. Publish TAF and observation data to other regional processing centers. 

c. Send alarm to analyst if forecasted weather element becomes "out of cate- 

gory" with actual weather. 

4. Terminal Forecast Collection Management: The TAF Data Management func- 

tion manages all TFMS data. Major Functions: 

a. Accept TAF, observation, station, and statistical data. 

b. Manage TAF, observation, station, and statistical collections. 

c. Determine TAF weather element category as defined by MAJCOM cate- 

gory and threshold definitions [68]. 

d. Compute and update TAF accuracy statistics. 

5. Terminal Forecast System Administration: The TAF system administration 

function permits configuration of the TFMS. Major Functions: 

a. Create and modify weather station data and category definitions. 

b. Schedule TAF accuracy reports generation. 
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c.   Configure TAF collection definitions for each processing center. 

3.4.1.3 TAF Validation Issues 

The Automated Weather Distribution System (AWDS), which currently 

produces weather reports at Weather Flights, also has no QC capability. This 

means that forecasts with typographical errors are submitted into the global 

network. The TFMS must integrate QC and provide validation facilities for TAF 

submissions, alerting the forecaster about TAF errors before entry into the global 

network. The TFMS must also provide an alarm facility to notify forecasters that 

a current forecast has become "out of category" due to recent weather observa- 

tions. 

3.4.1.4 TAF Publication Issues 

Since terminal forecasts are used by a wide variety of aviation customers, 

terminal forecast availability and dissemination is a very important design issue. 

To ensure the highest availability of current terminal forecast information, a rep- 

lication methodology must be addressed so the system avoids the centralized bot- 

tleneck issue, which greatly affects system performance and scalability [12]. TAF 

replication can be modeled using a variety of distributed algorithms. Since ter- 

minal forecasts are required in near real-time, performance of this algorithm be- 

comes a very important design consideration. 
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3.4.1.5 Measuring TAF Data Quality and Accuracy 

The TFMS provides automated metric collection facilities to report data 

quality and forecasting accuracy based on submitted TAF/observation data. The 

first metric collection facility is concerned with collecting statistics based on static 

data components, i.e. data format/ attribute values, to correct and determine data 

quality before data dissemination. These measurements serve as an assessment 

of the overall data quality of submitted TAF/observation products and may also 

serve as a basis for data warehouse certification [71]. Figure 14 shows the con- 

cept behind this approach. 

Rules Domain Values 

Forecast 

Remote Data Stores 

Valid Forecast 

Local Data Store 

Validation Report 

Invalid Forecast 

Figure 14: TFMS Static Data Quality 

When a forecast is submitted for validation, a rules engine is used to proc- 

ess each forecast attribute, e.g. wind speed. The rules engine uses a set of rules 

and a set of allowable attribute values to determine the data quality for each at- 

tribute. A forecast attribute value passes format validation if the attribute's value 

is a member of the set of domain values defined for that particular attribute, e.g. 
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forecast type = {amended, corrected, null}. Once all attributes are processed, the 

forecast is either valid or invalid. Valid forecasts are published to the local OWS 

data store and other regional sites. Invalid forecasts require reconciliation by the 

weather analyst to determine why validation failed. In both cases, a validation 

report collects the result of each rule in the engine and sends the report to the 

analyst and the local OWS datastore. The weather analyst uses the report to con- 

firm a valid forecast or correct an invalid forecast. The local data store uses the 

report for statistical purposes to determine data quality for each forecast attrib- 

ute. 

The second metric collection facility is concerned with collecting statistics 

based on dynamic data components, i.e. actual weather conditions versus an ana- 

lyst's forecasted conditions, to provide the analyst or organization an indication 

of forecast accuracy. Figure 15 shows the complete TFMS validation and meas- 

urement model proposed in this research. When a forecast or observation is 

submitted for validation, a rules engine is used to process each forecast attribute, 

e.g. wind speed. The rules engine uses a set of rules, domain values, trends, and 

MAJCOM category definitions to determine the data quality and classification of 

each weather attribute. 
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Figure 15: TFMS Validation and Measurement Model 

A forecast attribute is checked for format, then categorized, e.g. wind 

speed category A, and finally compared against the most recent observed cate- 

gory (trend) for that specific location. An observation attribute is checked for for- 

mat, then categorized, and its trend information updated accordingly. Once 

processed, the forecast or observation is either valid or invalid. Valid 

TAF/observation data is published to the local OWS data store and other re- 

gional sites. Invalid forecasts require reconciliation by the weather analyst to de- 

termine why validation failed. Reconciliation is also required when an actual 

weather category differs from the current forecast category for a given weather 

element, i.e. TAF amend alarm is issued. In all cases, a validation report collects 

the result of each rule fired in the engine and sends the report to the analyst and 

the local OWS datastore. The weather analyst uses the report to confirm valid 

TAF/observation submissions or correct an invalid submission.  The local data 
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store uses the report for statistical purposes to determine data quality and record 

forecast accuracy. 

Examples of forecast accuracy metrics include the percent correct and yes/no 

capability metrics [68]. As shown in Table 1, categorical skill scores and forecast 

validation statistics are computed using a two-by-two matrix. 

Table 1: Two-By-Two Forecast Validation Matrix 

Forecast "Yes" Forecast "No" 
Observed "Yes" A B 
Observed "No" C D 

The percent correct and yes/no capability formulas described below are 

computed using matrix variables A, B, C, and D. These variables are defined for 

a specific forecast weather Element, e.g. wind speed, as shown in Table 2 [68]. 

The percent correct metric is the number of forecast hits divided by the to- 

tal of forecast hits and misses, given by the formula: 

Percent Correct = (A +D)+(A +B + C + D) 

The capability yes/no metric is the number of forecast hits (forecast = yes 

or no) divided by the total of forecast hits and misses (forecast = yes or no) for 

the weather event, given by the formulae: 

Capability (yes) = A + (A + B) 

Capability (no) = D + (C + D) 
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Table 2: Matrix Element Definitions 

Matrix Element Definition 
A Number of times that a categorized weather 

element was forecast to occur (forecast = Yes) 
and then actually observed (observed = Yes) 

(regarded as a forecast "hit") 
B Number of times that a categorized weather 

element was not forecast to occur (forecast = 
No) but then actually observed (observed = 

Yes) (regarded as a forecast "miss") 
C Number of times that a categorized weather 

element was forecast to occur (forecast = Yes) 
but was not actually observed (observed = No) 

(regarded as a forecast "miss") 
D Number of times that a categorized weather 

element was not forecast to occur (forecast = 
No) and was not observed (observed = No) 

(regarded as a forecast "hit") 

3.4.2 Information System Model 

An information system model describes system objects and shows how 

these objects are used or processed by the software system [6 and 27]. There are 

three analysis tools that are very useful in decomposing a complex distributed 

object system. The first is the software system schema, a.k.a. an object/entity- 

relationship model, which serves to identify software system objects, showing 

how they collaborate within the information system. The second is the informa- 

tion flow model, which shows how data is transformed through the software sys- 

tem [6]. The final tool is the transaction model, which decomposes system trans- 

actions or use case scenarios, into object-specific behavior [27]. 
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3.4.2.1 TFMS Schema 

In constructing the software system schema, data and control objects are 

identified and their relationships analyzed [6]. The following criteria are useful 

for categorizing objects in the software system schema [76]: 

1. I/O Objects: These objects correspond to abstractions dealing with system 

I/O functions, e.g. network I/O, input sensors, and output controllers. 

2. User Role Objects: Represents a type of user or system action interfacing with 

the system, e.g. submitting a forecast for validation/publication. 

3. Control Objects: An active object that has state and controls the behavior of 

other objects or functions, e.g. publication and validation agents. 

4. Data Abstraction Objects: Data stores, e.g. weather station and validated fore- 

cast persistent data. 

5. Algorithm Objects: Encapsulates an algorithm in the problem domain, e.g. 

primary copy, pipeline and CORBA Event Service publication algorithms. 

As shown in Figure 16, the TFMS is composed of an organization, agents, 

alarms, reports, and system settings. The AF Weather organization contains re- 

gions, major commands, and weather encoding instructions applicable to all 

weather stations [59]. Regions consist of weather stations while major com- 

mands contain weather stations and define weather validation categories specific 

to the command's requirements. Each validation category, e.g. wind speed, con- 
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tains a number of thresholds that further subdivide that category, e.g. category 
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Figure 16: TFMS Object-Relationship Diagram 

Each weather station contains unique weather, trends, and statistics.    TFMS 

agents perform a number of operations within the system (§3.4.2.3 Role of TFMS 
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Agents). For instance, a validation agent checks a weather element's format and 

validates the element against station trends. TFMS alarms notify the weather 

analyst of a system condition requiring their attention. For instance, an amend 

alarm for a given location would indicate the latest forecast recorded for that sta- 

tion is out of category with the latest observation on record. 

TFMS reports consist of the analyst's desired time interval, weather sta- 

tions, and weather elements involved in the report. TFMS system settings are 

configured so each analyst may customize the environment to individual prefer- 

ences - accomplished by using the network logon user id. While Figure 16 

shows what objects, relationships, and message paths are used with the TFMS 

schema, it really doesn't show how information is processed. In the next section, 

data flow diagrams are used to show how information flows through the system. 

3.4.2.2 Information Flow 

Data Flow Diagrams (DFD) help reduce complexities for software engi- 

neers by providing a system view as a network of processes connected by data 

flows [27]. There are many uses for a DFD besides simply showing information 

flow within a software system. A DFD with formal semantics can model critical 

software functions and determine the serializability of distributed transactions 

(§2.5.3 Serializability) to ensure design correctness [39]. In this section, a formal 

semantics approach is not taken.  A DFD is simply used here to decompose the 
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information model to reduce the inherent complexities with distributed object 

system design. 
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Figure 17: TFMS Context-Level Data Flow Diagram 

Figure 17 shows the starting or context -level for function decomposition. 

The main focus of the context-level is to show the producers and consumers of 

information flow [6]. The TFMS identifies the weather analyst as the producer 

and the user interface, other OWS sites, AFW data warehouse, local datastore, 

and alarms as the consumers of information. 

In Figure 18, the TFMS context-level DFD is decomposed into a level one 

DFD to further define the TFMS software system. As Figure 18 shows, there are 

four primary processes: 1) Configure stations, settings, and categories; 2) Process 

forecasts; 3) Process observations; and 4) Generate Reports. Forecast, observa- 

tion, statistic, setting, station, category, rule, format, and trend data objects are 

also shown combined into one datastore; this datastore is further decomposed 

along with the rest of the system in subsequent diagrams. 
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Figure 18: TFMS Level One Data Flow Diagram 

The process forecast and process observation processes identified in the level 

one DFD are further decomposed in Figures 19 and 20. 
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Figure 19: TFMS Process Forecast Data Flow Diagram 

In Figure 19, a forecast is received from the user interface. The forecast's 

format and trend is then validated. If the forecast fails validation, the forecast 

and a validation report are returned to the weather analyst. The validation re- 

port is also published to the local data store to update format statistics.   If the 
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forecast passes validation, the forecast is stored locally then published to other 

OWS sites. The validation report is also published to the local data store to up- 

date format and accuracy statistics. 

In Figure 20, observations are processed in much the same way. The pri- 

mary difference is the check/update trend process. An alarm is generated if the 

observed condition is out of category with the current forecast condition. 
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Figure 20: TFMS Process Observation Data Flow Diagram 

3.4.2.3 Role of TFMS Agents 

In the TFMS schema, a distinction was not made on the roles a TFMS 

agent can take.  This section provides a brief discussion of major TFMS control 

agents and their responsibilities. 

Role of Validation Agents: Validation agents ensure all TAF data values 

are checked for proper encoding I AW AFM 15-124, Meteorological Codes [57]. 

In addition, validation agents also check a forecast's weather element value 
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against the most recently recorded observation value for that particular element. 

Validation agents will use a number of different data validation methods to ac- 

complish this task. Since each terminal site possesses unique weather patterns, a 

validation agent must ensure it uses the appropriate trend data for each site. Be- 

cause validation agents require observation trend data as part of the validation 

process, this data must be locally accessible. Validation agents also document 

validation results in the form of a validation report for each forecast or observa- 

tion attribute. Validation agents coordinate with publication agents to dissemi- 

nate weather, reports, and alarms. 

Role of Publication Agents: Since validation is performed prior to TAF 

entry into the distributed system (§3.3 Proposed Forecast Generation), the data is 

assumed correct when it reaches a publication agent in the same address space. 

Publication agents distribute weather, report, and alarm data to meet system 

availability, functionality, and performance requirements. The specific replica- 

tion facility for weather data distribution is subject to experimentation based on 

the read-only characteristic of a validated TAF or observation. TAF/observation 

publications must be written to stable storage prior to replication [9 and 12]. 

Publication agents coordinate with collection and metric agents to deliver system 

products. 

Role of Collection Agents: Collection agents build and maintain data ob- 

ject cache collections (stations, forecasts, observations, and statistics) and usually 
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consist of two other system agents - query and notification agents [41 and 43]. 

The query agent is responsible for building the cache collection based on SQL or 

object query language (OQL) data manipulated language (DML) declarations 

over the underlying datastore [9 and 44]. The notification agent is responsible 

for receiving weather data from other regions, so it's used as a sink for CORBA 

weather events. In the local datastore, collection agents receive validated weather 

data from a publication agent and ensure cache collections are updated accord- 

ingly. 

Role of Metric Agents: Metric agents are responsible for receiving valida- 

tion reports from publication agents, and updating regional statistics using re- 

port data. As mentioned above (§3.4.1.5 Measuring TAF Data Quality and Accu- 

racy), validation reports may also be used to certify the data quality of weather 

data before entry into the data warehouse [71]. For example, if AFWA requires a 

99 percent data quality percentage for the wind speed attribute, and validation 

reports show a 92 percent format validation rate, then AFWA or the associated 

OWS must analyze invalid forecast reports to find the root cause for the wind 

speed validation failures. 

3.4.2.4 Transaction Model 

The transaction model describes task decomposition and interactions 

among objects identified in the TFMS schema and DFD models [13].   This is 

analogous to system interaction diagrams. Based on these diagrams and descrip- 
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tions, we can probe for distributed processing opportunities in the system to 

maximize computing resource efficiency [15]. This model also provides the basis 

for two other issues concerning system design - system test plan and user inter- 

face development. The system test plan is designed to aid the validation process 

for integration testing while user interface design is primarily derived from the 

transaction model decomposition [27]. 

The primary reason for choosing this design method over use case sce- 

nario methods is it captures the same information in a more understandable for- 

mat, while also addressing integration testing and user interface design issues as 

well, i.e. it ties all high-level aspects of the system together very nicely. 

3.4.2.4.1 Task Decomposition 

Weather Analyst Management TAF Validation Management TAF Publication Management 

TAF Collection Management TAF System Administration 

TFMS Level 1 Transaction Frame 

Figure 21: TFMS Transaction Model 

Figure 21 shows top-level actions for the TFMS distributed system based 

on TFMS functional requirements (§3.4.1.2 Functional Description).   Figure 22 
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shows further decomposition applied to weather analyst management. Each action 

in Figure 22 is refined until object-level interactions are exposed. In this section, 

the "submit forecast" action is further decomposed to demonstrate the methodol- 

ogy- 

Submit Forecast Submit Observation ViewTAF Accuracy Report 

View TAF Accuracy Data 

TFMS Level 2 Weather Analyst Management Actions 

Figure 22: Weather Analyst Management Transaction Model 

Figure 23 shows a suitable breakdown for the " submit forecast" transaction. 

The diagram shows a complete sequence of operations needed to carry out the 

action and the major objects involved with each operation to form the transac- 

tion. Figure 23 also serves as one validation test case in the TFMS system test 

plan [6 and 27]. 
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Passed 

Publish Forecast 
(Publication Agent, Event Service, 

Forecast) 

Receive Forecast 
(Collection Agent, Notification Agent, 

Forecasts) 

Check Format 
(Rule, Format, Forecast) 

Determine Categories 
(Forecast, Categories) 

Update/Check Trend 
(Rule, Category, Trend, Forecast) 

Update Statistics 
(Metric Agent, Statistics) 

Publish Report 
(Publication Agent, Report) 

Receive Report 
(Metric Agent, Report) 

TFMS Level 3 Submit Forecast Transaction 

Figure 23: TFMS Submit Forecast Transaction 

This is a very simple, but powerful tool when performing distributed data 

analysis [27]. From this simple flowchart, processes uncovered during DFD 

modeling (§3.4.2.2 Information Flow) are mapped to objects identified during 

TFMS schema definition (§3.4.2.1 TFMS Schema). 

3.4.2.4.2 Object-Level Behavior 

The object-behavior model further decomposes the task decomposition 

model to arrive at object-level method descriptions that perform application logic 

[27]. Figure 24 shows the "submit forecast" transaction further decomposed to 

the object level for the publication agent. All objects are analyzed in the same 

fashion. 
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Forecast Sent 

[consumer = nil]/Nohandle 
Locating Consumers!! 

TFM S Publication Agent Behavior 

Figure 24: Publication Agent Behavior 

Based on this decomposition, the publication agent reacts to three external 

events: overloaded alarm, report, and forecast method invocations. The publica- 

tion agent first locates consumers for the particular event. If no consumers are 

on-line (consumer = nil), an error is returned to the caller. If consumers are on- 

line, the publication agent changes state to publish the forecast, report, or alarm. 

One distributed insight into this state diagram is the guard condition for publish- 

ing forecasts (consumer = forecast event channel and collection agent). If the 

publication operation is communication-intensive (bulk forecast transfers), a fur- 

ther decomposition could divide the operation into two private methods: a local 

communication operation (collection agent) and a remote communication opera- 

tion (forecast event channel). Each operation would be multi-threaded so the 

communication load is divided to increase server-side performance and improve 

operation execution time [21 and 47]. 
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3.4.2.5 Granularity 

Determining granularity in a distributed system has a direct impact on 

system interface design, performance, and scalability [10,15, and 21]. The TFMS 

is centered on validation and distribution of terminal forecasts and observations; 

therefore, a fine level of granularity is appropriate for these objects, i.e. object- 

level granularity. Currently, passing an object by value is supported in CORBA 

version 2.3, but not widely implemented [21]. Since interoperability is always a 

major consideration, there are two choices: a structure may be defined in CORBA 

IDL to meet necessary functionality for data handling purposes or a reference to 

an interface may be used to retrieve data members. 

It's very important to define rules for grouping objects and/or compo- 

nents into subsystems. In this paper, subsystem, module, and package are used 

interchangeably. Cohesion and coupling criteria are used to partition the system 

into subsystems, components, or objects capable of autonomous operation [6]. 

Cohesion Criteria: Objects may be functionally, sequentially, or tempo- 

rally grouped into subsystems or components. Functional cohesion is the 

strongest criteria for module structuring since it means the objects perform simi- 

lar functions in the system, e.g. validation or publication functions. Temporal 

cohesion is the weakest module structuring criteria because this indicates that 

different objects may execute at the same time (concurrently) and should be con- 

77 



sidered as separate, autonomous system entities.   In some cases, the functional 

aspects of the objects may warrant their allocation to the same module. 

Coupling Criteria: Coupling refers to dependencies in the distributed sys- 

tem. There are many types of coupling [6], but in a distributed system, loose cou- 

pling is desired to ensure the autonomy of physical processing nodes, i.e. no sub- 

system, component, or object depends upon another system entity to carry out its 

function in the system. For example, the forecast publication module publishes 

forecasts. If the publication module were designed to have knowledge or depend- 

encies of a particular forecast validation module, then the system would quickly 

lose its fault tolerance capabilities of simply loading another validation module 

to continue operation and improve overall system availability [10]. This simple 

scenario also speaks volumes about system flexibility and the dynamic capacity of 

the software system in general [8]. 

The TFMS validation, metric, and publication functions are other candi- 

dates for distribution, since rules and statistical operations may be computation- 

ally expensive while the publishing operation may be an expensive communica- 

tion operation. For instance, to validate a forecast sequentially, the validation 

agent checks each weather element using a business rule for each element. If 

these business rules should become computationally expensive, then distributed 

processing using all available platforms needs to be considered as a solution [15]. 

Another consideration is bulk validations. If the validation execution time is ac- 
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ceptable for a single forecast, but excessive in the case of ten forecasts, then dis- 

tributed processing using a coarser granularity (forecast granularity as opposed 

to weather element granularity using individual rules) may be more appropriate. 

For finer granularity, validation agents would multithread expensive business 

rules and obtain an interface reference on a separate CORBA server to accom- 

plish the same rule on a different processor. Another approach would be to im- 

plement each weather attribute as a dependent object [72]. A dependent object is 

effectively a data wrapper that encapsulates each weather element and applies 

specific behavior and rules to that weather element. 

For coarser granularity, the validation agent would send forecasts to an- 

other validation function for processing on a separate CORBA server. In both 

cases, the validation function must be measured and the appropriate processing 

granularity determined. Partitioning the TFMS validation function in this man- 

ner provides the flexibility to distribute the validation process over any number 

of local OWS processor resources (§3.5.2.5 Validation Module). 

3.5 Distributed Object System Design 

The primary purpose of distributed object system design is to transform 

the software requirements specification into an architectural, interface, data, and 

procedural design that is traceable to customer's requirements. Other objectives 

pertain to software quality and extensibility [5, 6, and 29]. 
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Distributed object system design also considers a scalability model, 

which separates design and implementation concerns based upon the scale of the 

problem we're trying to solve, e.g. publishing forecasts to all OWS regional proc- 

essing centers for maximum forecast availability is an enterprise-level problem. 

The scalability model helps us decide if we should use a system-provided ser- 

vice, e.g. OMG Event Service, or apply a known framework or design pattern to 

solve the problem [14]: 

1. Global: Interoperability between organizations, e.g. open systems. 

2. Enterprise: Interoperability within an organization, e.g. organizational hard- 

ware and software standards. 

3. System: Interoperability between applications. 

4. Subsystem: Developing applications that meet a specific user requirement. 

5. Framework: Developing generic solutions of cooperating components that can 

be instantiated to solve a specific subsystem design issue. 

6. Component: Developing generic solutions of cooperating objects to solve re- 

curring problems. 

7. Object: Concerned with code reuse more than design reuse. 

3.5.1 System Partitioning 

System partitioning defines an architectural structure and the relation- 

ships among major elements in the software system [6]. As shown in Figure 25, 

the validation, publication, and data functions are placed in separate modules 
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that provide clean separation of functionality coupled with a coarse level of 

granularity (§3.4.2.5 Granularity), which reduces communications costs [1 and 

15]. TFMS system modules (subsystems) are then partitioned along client, busi- 

ness, and data boundaries as shown in Figure 25. This partitioning follows an N- 

tier modeling methodology [2, 4, 7, and 8]. In the user services layer, weather 

analyst functions are grouped into a client module. The business layer contains 

forecast validation logic, grouped into a validation module; publication func- 

tions, grouped into a publication module; and data classification logic, grouped 

into a classification module. 
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Commands. Data 
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\ / 
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Figure 25: TFMS Modular View 

It's during the system-partitioning phase that global, enterprise, and sys- 

tem design patterns are introduced. The system-level architecture is the endur- 

ing structure that survives component modification, evolution, and interopera- 
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bility over the system's lifecycle [14]. Using the CORBA Name, Time, and Event 

services to implement application requirements provides reuse at the architec- 

tural level while controlling system evolution and complexity. The data layer 

contains collection management functions and statistical computation grouped 

into a data module. System administration functions are integrated according to 

the affected module. Internal design for each module is discussed below. The 

delegation module is reused in the business and data layers (§3.5.2.4 Delegation 

Module). 

3.5.2 System Module Design 

Modular design addresses the issues of interface, data, and procedural de- 

sign. Task architecture and concurrency issues are also addressed during system 

module design. If the module is providing services to many clients, concur- 

rent/synchronization issues become a large part of the design effort to improve 

throughput [76]. During modular design, design patterns and frameworks are 

also considered and applied where appropriate. A key OO principle is very no- 

ticeable in distributed object system development: program to an interface, not to 

an implementation [13 and 14]. Adhering to this principle ensures clients remain 

unaware of specific object types and underlying object implementations. This reduces 

dependencies within the system aiding reuse [13]. 
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3.5.2.1 Thread Architecture 

Thread structuring criteria are used to map threads to individual objects 

or groups of objects in the subsystem architecture. Some rules to consider when 

specifying the thread architecture [76]: 

1. I/O Objects: Objects interacting with I/O devices, e.g. network or disk, are 

mapped to a distinct thread. 

2. Internal Objects: Periodic, asynchronous and user role objects are mapped to 

a distinct thread. Periodic objects that execute in the same time period may 

be grouped into the same thread if they're not different priorities, i.e. by tem- 

poral cohesion criteria. 

3. Cohesion Criteria: Objects meeting control, sequential or temporal cohesion 

are mapped or grouped into distinct threads. These usually include con- 

trol/command objects, computationally expensive sequential operations, and 

periodic operations as mentioned previously. 

3.5.2.2 Data Architecture 

Data structuring criteria are used to map data stores in the subsystem ar- 

chitecture. A few data abstractions to consider [76]: 

1. I/O Abstraction Interfaces: Provide I/O interface definitions to encapsulate 

device/access details. 

2. Data Abstraction Interfaces: Encapsulate sequential, e.g. vectors and lists, and 

associative, e.g. maps and sets, container implementations. 
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3.   Algorithm Abstraction Interfaces: Encapsulate all application algorithms in 

objects to hide algorithm details. 

Finally, once the task and data architectures are defined and integrated to 

develop the subsystem or component architecture, the interface is defined. The 

subsystem or component's interface characterizes the complete set of requests 

that can be sent to the module [13]. The rest of this section discusses TFMS de- 

sign, module by module using the software requirement specification as input. 

An important consideration to any modeling methodology is its comprehensibil- 

ity. Too much detail clutters the model, making it incomprehensible [27]. 

3.5.2.3 Client Module 

Figure 26 shows the client module design. The weather analyst communi- 

cates with the TFMS distributed system using the CORBA interfaces defined in 

the TFMS Delegation module. If an analyst wants to view statistics, schedule sta- 

tistical computation, or submit a set of forecasts/observations for validation and 

publication, these interfaces characterize a complete set of operations that can be 

invoked on an object, component, or module [6]. 
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Figure 26: TFMS Client Module 

As shown in Figure 26, the client module is very simple and its functional- 

ity is easily traceable back to user requirements (§3.4.1.2 Functional Description). 

When the client module initializes, the program connects to the CORBA Event 

Channel to subscribe to alarm data. The analyst is then presented with a menu 

of options similar to the ones shown in the transaction model. When the ob- 

server chooses an option, a specialized menu control is instantiated to execute user 

interface logic pertaining to that system action. This is an application of the well- 

known command design pattern that removes tight coupling between objects to 

reduce object dependencies [6 and 13]. We can easily extend our user interface 

by defining new control subclasses to add new window or menu functionality. 
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3.5.2.4 Delegation Module 

The TFMS delegation module is shown in Figure 27. The purpose of the 

delegation module is to separate CORBA and platform-specific thread code from 

business logic. This approach improves physical design, isolates portability 

problems and CORBA errors to this module, reduces compile and link times by 

limiting CORBA source file dependencies, and limits the need for developers to 

be proficient in using a specific CORBA language mapping [21 and 22]. 
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Figure 27: TFMS Delegation Module 

The module is initialized in either a business or data server mode, further 

promoting reuse within the system. Two CORBA IDL interfaces: IRBusiness and 

IRCollection are defined to permit this flexible arrangement. A fine level of granu- 

larity is implemented by defining CORBA data structures for weather and report 
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data. Defining CORBA sequences for data structures as shown for the "submit" 

and "add" overloaded operations supports bulk operation requirements. 

To implement CORBA IDL-declared operations, we define a concrete sub- 

class that implements the C++ virtual method definitions generated in a header 

file by the IDL compiler. The Business_Impl and Collection_Impl classes perform 

this function and dispatch a command subclass for each CORBA operation in- 

voked. Command subclasses also implement the command design pattern (a.k.a. 

coordinator and transaction patterns) and serve as client-processing agents; pro- 

viding uniform, consolidated access to a number of TFMS services [13 and 14]. 

To improve server throughput, command subclasses are multithreaded (§4.2.2.3 

Server-Side Performance) [21]. The notification agent is also part of this module, 

instantiated by the Collection Jmpl class as a sink for TAF/observation publication 

events using CORBA's Event Service. As shown in Figure 27, the delegation 

module only communicates with other TFMS module interfaces, so this module 

is completely decoupled from other TFMS modules [6,13, and 14]. 

3.5.2.5 Validation Module 

The TFMS validation module is shown in Figure 28.  The purpose of the 

validation module is to validate forecasts by checking encoding format and com- 

paring current forecast categories against the latest weather observation cate- 

gory. As Figure 28 shows, rule, format, and trend containers are mapped from 

the TFMS schema (§3.4.2.1 TFMS Schema). To obtain maximum reuse, efficiency, 
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and reliability, the validation module uses C++ standard template library (STL) 

map and stack containers [9 and 70]. The benefits of using generic components, 

e.g. reusability, reliability, reduced development time, are widely known [51 and 

70]. 
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Figure 28: TFMS Validation Module 

The ValidationAgentQueue container holds idle validation agents to reduce 

execution time. This is a simple implementation of the evictor design pattern that 

reduces the delay involved with creating validation agents for each request. The 
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evictor design pattern also provides memory management benefits, where agents 

are evicted from the queue if they're idle too long [21]. The validation, publica- 

tion, and data modules all use the evictor pattern to reduce the cumulative object 

creation delay throughout the TFMS. 

The validation module does have concurrency issues with the trend con- 

tainer. When the module receives a set of TAF/observations, all station trends 

must be updated prior to checking if the current forecast's weather element is 

"out of category" with the current observation. There are two ways to imple- 

ment lock granularity in this case: at the container level or at the trend object level. 

For container-level locking, the validation agent gets all category update data 

from the classification module as a bulk request, obtains a lock on the trend con- 

tainer, updates the trends, and then unlocks it. In this case, rules are locked out 

until the update is performed and the validation agent unlocks the lock variable 

for the container. Starvation is possible in the case of very large bulk validation 

requests. Implementing the lock at the object level would require only a few mi- 

nor changes. The rule now obtains the category update from the classification 

module, obtains a lock on an individual trend object, updates and checks the 

weather element, and then unlocks it. In this case, other rules are locked out only 

if they try to access a locked trend object. Starvation is very unlikely since the 

weather station ICAO identifier is used as part of a unique map key, so a given 

TAF/observation update operation will only affect the trend objects for that 
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weather station and element. This design greatly increases application concur- 

rency by a factor of the size of the trend container, while keeping lock operation 

complexity the same. Figure 28 shows the trend object with the lock and unlock 

operation additions to support operation serialization functionality. 

3.5.2.6 Publication Module 

The TFMS publication module is shown in Figure 29. The purpose of the 

publication module is to publish validated weather to meet performance, avail- 

ability, and AFW dissemination requirements IAW AFMAN 15-111 [67]. This 

module is also responsible for publishing TFMS alarms to the CORBA Event 

Channel and validation reports to the local OWS data module. 

Since the publication module already uses the CORBA Event Service to 

send TAF/observation data to other OWS sites, alarm functionality was moved 

from the validation module to improve physical design by removing all CORBA 

source file dependencies from the validation module (§3.5.2.4 Delegation Mod- 

ule). The publication module also implements a "Strategy" design pattern that 

encapsulates a family of algorithms, i.e. primary copy, pipeline, event, making 

the experimentation process simply a matter of algorithm selection, as opposed 

to changing source code [13]. 
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Figure 29: TFMS Publication Module 

3.5.2.7 Classification Module 

The TFMS classification module is shown in Figure 30. The purpose of the 

classification module is to categorize weather attributes IAW defined MAJCOM 

category thresholds and return this information to the caller. 
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Figure 30: TFMS Classification Module 

As shown in Figure 30, classification agents hold a reference to all defined 

categorical information and since category data is static, no data consistency is- 

sues exist with this module. 

3.5.2.8 Data Module 

Figure 31 shows the data module. The data module provides the neces- 

sary performance and availability required for TFMS customers to retrieve 

timely forecast, observation, and statistical information. The delegation module is 

reused to dispatch multithreaded data layer CORBA operations. Physical design 

is improved by removing all CORBA source file dependencies from the data 

module (§3.5.2.4 Delegation Module) [21 and 22]. When the data module initial- 
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izes, forecast, observation, statistic, and weather station containers form a cache 

collection data object layer [32]. The TFMS schema is almost directly mapped 

from the software specification, e.g. a weather station contains a set of forecasts, 

observations, and statistics. 

The collection and metric agents are mediators; controlling and coordinat- 

ing object interaction to the cache collection [13]. The notification agent (§3.5.2.4 

Delegation Module) is a colleague of the collection and metric agents, performing 

a push data delivery service between the CORBA Event Service and the ICollec- 

tion and IMetric interfaces. In this way, colleagues are decoupled from each other 

and may be directly reused in other applications [13]. 

Since potentially many customers may require access to read-only forecast, 

observation, and statistic cache collections, search queries are a prime candidate 

for multithreaded application and load balanced distribution for increased avail- 

ability if the collection module is replicated within an OWS. This functionality is 

easily added to the delegation module by using a static variable in the view 

command class to keep track of client connections (number of active queries). 

When a certain client threshold is reached, we can redirect the client using a loca- 

tion agent (not shown), which maintains handles to replicated collection modules 

on other local processing machines. 
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The adapter pattern wraps data stored as relational tuples or files into data 

layer objects in cache collections [41 and 43]. This pattern is only required if the 

underlying datastore is not an object-oriented database management system 

(OODBMS). By wrapping forecasts in this manner, we do introduce a perform- 

ance penalty when building the object containers or flushing a given object from 

cache to disk. This penalty is commonly referred to as impedance mismatch and 

surfaces whenever we have to map one language to another [44]. 

The IMetric interface provides an update operation for bulk validation re- 

ports. Concurrency issues do exist with the format element and accuracy ele- 

ment containers. When the subsystem receives a set of TAF/observations, all 

validation elements must be updated. Once again, there are two ways to imple- 

ment lock granularity: at the container level or at the validation element object 

level. In this case, updating the validation elements makes more sense at the 

container level, due to the query possibilities of the analyst. In other words, data 

consistency/dependency issues exist between validation elements, whereas in 

the trend object, there were no inter-object dependencies (§3.5.2.5 Validation 

Module). Accuracy elements use a unique key composed of four properties: 1) 

name, e.g. wind speed, 2) category, e.g. A, 3) date, e.g. 19991215, and 4) hour. 

Format elements use a name key, e.g. wind speed, as they simply track the num- 

ber of valid and invalid entries for a given weather attribute. 
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3.5.3 System Performance, Evolution, and Reliability Considera- 
tions 

System performance is determined by a number of factors (§4.2 Perform- 

ance Benchmarks). Some issues such as impedance mismatch, processor speed, 

and network latency are unavoidable. Items such as using threads for computa- 

tionally expensive operations, event loops for communication intensive opera- 

tions, and pre-creation facilities such as the evictor design pattern to reduce sys- 

tem-processing delay are used where the technique seemed most appropriate. 

Other design patterns are used primarily for easy system extension. The 

overloaded execute method of each derived command (or control) class carries 

out functions required by a specific CORBA operation (making all calls to the 

appropriate objects). In this way, each command object decouples objects that 

invoke operations from objects that implement the behavior, greatly adding to 

reuse of system objects. Also, it's very easy to add new command objects with- 

out recompiling the client since the delegation layer isolates the CORBA classes 

from the implementation language [6]. 

Parameterized types also aid system reuse and reliability as well. For the 

TFMS, the primary opportunity for reuse was container implementations. As 

mentioned above, the C++ STL provides many different data structures for the 

application developer, e.g. vector, list, stack, map, multi-map, etc. [9]. Using the 

C++ STL increases application reliability and software reuse while reducing cod- 

ing and debugging time since its containers and algorithms are fully tested and 
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debugged [51 and 70]. The map container was primarily chosen for order one 

lookup performance, since the keys were all unique, and the stack was chosen for 

its ability to easily determine unused system agents for better memory manage- 

ment facilities [21]. 

Implementing very course granularity does generally possess the same dis- 

advantages as most centralized approaches: 1) single point of failure and 2) poor 

scalability [12]. In addition, adding or deleting interface operations may mean 

IDL, client, and server recompilation, so comprehensive interface definition is not 

only important, it's critical - even if operations aren't fully supported yet. The 

main disadvantage with fine granularity is increased communication within the 

distributed system, so there are certainly tradeoffs to consider, e.g. distributing n 

rules over n machines, as opposed to n rules on one machine. 

3.6 Summary 

In this chapter, an OO design methodology is employed to develop the 

TFMS. This methodology shows how the TFMS is partitioned into a distributed 

system and addresses the issues of forecast validation, publication, and metric 

processing functions. The OO lifecycle chosen is based on distributed OO data 

systems design and shows how TFMS requirements are developed and trans- 

formed across the lifecycle [27]. 
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IV. Distributed System Prototyping 

On the other hand, we cannot ignore efficiency. - Jon Bentley 

4.1 Introduction 

An important aspect of distributed system design involves performance 

measurement and determining the effectiveness of the design. This involves un- 

derstanding performance benchmarks, the operating environment, and the ap- 

plication's functional requirements to determine if the software system effec- 

tively implements what the customer requested (§3.4.1.2 Functional Description). 

All factors affecting the experimental process are described, then a client/server 

measurement model is examined to uncover appropriate measurement points 

within the system. Experimental parameters are also defined along with system 

measurements. 

4.2 Performance Benchmarks 

A benchmark is a performance testing application that captures the data 

processing characteristics for a class of applications [10]. No single metric has the 

ability to convey computer system performance for all applications. System per- 

formance significantly varies from one problem domain to another and distrib- 

uted object system performance is no exception. Domain-specific metrics specify 

a synthetic workload that characterize a typical application for a given problem 

domain [54].   The performance of this workload using various hardware plat- 
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forms, distributed object system implementations, or alternative algorithms pro- 

vides valuable insight into the relative performance of each alternative as it re- 

lates to the problem domain. For a benchmark to be useful, we must keep the 

following factors in mind [54]: 

1. Relevance: Must measure performance relative to typical operations within 

the problem domain. 

2. Portability: Easy to implement on different architectures. 

3. Scalability: Should apply to small and large systems alike, i.e. the benchmark 

itself should be scaleable. 

4. Simplicity: The benchmark must be understandable or it may lack credibility. 

This section considers performance metrics used to evaluate and deter- 

mine relative performance of the TFMS application. This research is applicable 

to a wide range of applications and is written with the intent of providing insight 

into the metric definition process, specifically addressing the measurements re- 

quired or that should be considered for distributed object system development. 

4.2.1 Basic Performance Metrics 

Execution time and floating-point operations (FLOP) are frequently used 

to measure a program's computational workload. 
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4.2.1.1 Execution Time 

Program execution time is the total time taken to execute a program and is 

measured as wallclock, response, or elapsed time [55].  Execution time depends 

upon many factors. Table 3 summarizes major factors affecting execution time. 

Table 3: Factors Affecting Execution Time 

Execution Time Factors 
Algorithm An algorithm's asymptotic performance has a huge impact on 

execution time e.g. a bubble sort O (N2) versus a quick sort O 
(N Log N). 

Data Structure How data is structured affects processing time e.g. a simple 
data type takes much less time to marshal than a complex con- 

structed type like a nested structure [21]. 
Program Data Certain programs are immune to input data values e.g. an NT- 

point Fast Fourier transform, but others are greatly affected by 
input data values, e.g. comparison-based sorts such as quick- 
sort, whose best or worst case time greatly depends upon the 

partitioning of the input sequence [15]. 
Operating Platform Machine/Instruction set architecture, operating system and 

version, compiler and version, memory hierarchy (multiple 
cache level, memory, and disk bandwidth), and application 

use (dedicated or timeshare) all affect execution time [10 and 
55]. 

Programming Language Low-level or high-level languages, compiler optimizations, 
and code optimizations can greatly affect execution time e.g. In 
C++, inlining friend and member functions, and removing un- 
needed destructor and copy constructor/assignment defini- 

tions greatly decreases execution time [52]. 
Interconnection Network Network characteristics (shared/switched, 

LAN/MAN/WAN), network bandwidth, communication la- 
tency, and delays caused by buffering interconnection device 

mismatches e.g. high-speed to low-speed and fragmenta- 
tion/reassembly operations all greatly affect a program's exe- 

cution time [10 and 11]. 

4.2.1.2 Floating-Point Operations 

In applications where numerical calculations dominate, a metric fre- 

quently used is floating-point operations. The unit of measurement is the num- 
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ber of floating-point operations per second (FLOPS).   For a meaningful metric, 

rules must be followed for counting floating-point operations [10]: 

Table 4: Some FLOP Counting Rules 

Rule Number of Floating-point Operations Comment 
X = 1.2+ 2.4* 1.22-1.11; 3 Addition, multiplication, 

and subtraction count as 
one FLOP each. 

X = Y; 1 Isolated assignment. 
If (X > Y) X * 2.2; 2 Comparison counted as 

one FLOP. 
X = (float) Y * 2.0; 2 Typecast counted as one 

FLOP. 
X = Z / 3.21 * sqrt (Y); 9 Division or square root 

counted as four FLOPS. 
X = sin (Y) * exp (Z); 17 Sine, exponential, etc. 

counted as eight FLOPS. 

4.2.1.3 Combinations of Basic Metrics 

Execution time and floating-point operations can also be used in a mean- 

ingful way when benchmarking different design alternatives, e.g. testing if multi- 

threading or event-based server design is more suitable for a given computa- 

tional load (§4.2.2.3 Server-Side Performance). In this report, a benchmarking 

methodology is implemented where a certain FLOP workload is applied to a 

server, and response time is measured to determine the computational workload 

where a threaded approach may be more appropriate than an event-based server 

implementation for a given number of clients. 

4.2.2 CORBA Performance Metrics 

In distributed computing, whether you're designing business applications 

using distributed objects or allocating processors to solve a computationally- 
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expensive numerical problem, you must know the communication costs associ- 

ated with the application. This means you must know the cost of sending remote 

messages, which is determined by two factors: latency and marshaling rate. One 

point to always remember is that results may vary widely depending on the op- 

erating environment used for measurements. For measurements to be meaning- 

ful, developers should always create a prototype of the deployment environment 

to mitigate all confounding factors [49]. 

4.2.2.1 Call Latency 

Call latency is the minimum communication cost you incur when invoking 

a remote operation. The cheapest CORBA message is one that has no parameters 

and returns no result using the CORBA IDL oneway keyword. One-way CORBA 

operations use best-effort delivery semantics and must follow three rules: 1) must 

have a void return type, 2) must not contain out or inout parameters, and 3) must 

not contain a "raises" expression [21]. 

Measuring call latency determines a fundamental design limit for the ORB 

implementation you're comparing or using. If the application requires more re- 

mote message invocations than the ORB is capable of delivering, either a better 

performing ORB must be found or the application must be optimized to meet 

this limitation. For example, suppose you measure the call latency for two com- 

mercial vendor ORBs. One vendor's ORB has a call latency of 1 millisecond (ms) 

and the other vendor's ORB a 2 ms call latency. Your application is optimized, 
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but still requires 600 remote calls per second (sec). Considering the two ORBs 

above, you can expect a maximum call dispatch rate of 1000-calls/sec for one 

ORB implementation, while the other delivers a 500-calls/sec maximum dispatch 

rate. Based on the call latency benchmark, you'd most likely choose the 1000- 

calls/sec ORB implementation for your distributed object system. 

Another important consideration is hardware utilization. We gain insight 

into hardware utilization by determining the efficiency of a particular operation, 

where efficiency is a measure of the fraction of time that a processor is usefully 

employed [15]. Mathematically, efficiency is defined by [15]: 

E = S/p 

Where S is the speedup ratio of serial run time to parallel run time and p is 

the number of processors. 

In a client/ server model (§4.3.3 Client/Server Measurement Model), the 

number of processors is one and efficiency effectively becomes equal to the 

speedup ratio. If efficiency is a design issue, we can determine the amount of 

server work needed to obtain a target efficiency by using the call latency bench- 

mark and measuring the time for the cheapest local procedure call (LPC), i.e. local 

latency. In this way, we can use the standard speedup equation to determine 

where to place certain operations within the distributed system. For example, 

consider our cheapest local operation costs 1 microsecond, while our ORB's call 

latency costs 1 msec. From the standard speedup equation, S = 0.001, so our re- 
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mote calls are 1000 times slower. If target efficiency is 30 percent or above, then 

the operation workload must roughly exceed 0.5 msec to properly utilize the re- 

mote machine and mitigate communication costs (~0.5msec/0.5msec + 1msec = 

-33% efficiency). 

4.2.2.2 Marshaling Rate 

The marshaling rate is the speed in which an ORB can transmit and re- 

ceive data over the network. Marshaling performance depends upon the data 

type being transmitted over the network [21]. Simple types typically marshal 

fastest because they're usually a simple block copy into the ORB's transmit 

buffer. Marshaling complex data types and object references usually takes much 

more time because the ORB must do more work at run time collecting data from 

different memory locations, and then copying this data into the transmit buffer. 

When determining an application's marshaling rate, it's important to use 

the actual data types used by the application in its typical operating environment. 

Designers should determine the time to marshal, unmarshal, dispatch, and ser- 

vice each remote call for future use in performance calculations and measure- 

ments [49]. 

4.2.2.3 Server-Side Performance 

Because CORBA is server-centric, most scalability and performance im- 

provements are realized on the server-side [21].   Multithreading is certainly at 
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the top of a server developer's to-do list, but event-based approaches can also be 

used as an alternative to multithreaded server applications. In this section, the 

two approaches are briefly discussed. 

Multithreaded server applications can provide many benefits like simpli- 

fied program design, improved throughput, true concurrency on multiprocessor 

hardware platforms, and improved response time enforced by the operating sys- 

tem scheduler [21 and 56]. To realize these benefits though, multithreading is 

practically applied toward four areas: 1) offloading time-consuming tasks from 

the main thread, 2) providing application scalability for SMP systems, 3) sharing 

computing resources fairly, and 4) driving independent players in simulations 

[50]. Server applications are supposed to operate efficiently during peak usage 

periods, when many active clients require simultaneous service. Given this envi- 

ronment, a single-threaded implementation would make a poor choice if certain 

requests require disk or network I/O, since these requests would block the 

server application for extended periods of time, starving other client requests [11, 

12, and 56]. If the server application only processes short-duration requests 

though, a single-threaded implementation may be the right choice to minimize 

application complexity [47]. 

Multithreaded ORB implementations have a wide variety of options 

available to handle requests. Table 5 provides a summary of the most popular 

ORB thread architectures.   Once the ORB core dispatches a client request to a 
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portable object adapter (POA) where the target object is located, the POA thread- 

ing policy takes over [21]. A POA can have a SINGLE_THREAD_MODEL or 

ORB_CTRL_MODEL value for its thread policy. When a POA has the 

SINGLE_THREAD_MODEL value set, all servant invocations are serialized. For 

a multithreaded ORB, when a POA has the ORB_CTRL_MODEL value set, this 

implies that a POA is allowed to dispatch multiple requests concurrently, but it 

says nothing about the thread model used to handle these requests [21]. As Ta- 

ble 5 shows, there are advantages and disadvantages with each thread model, so 

application requirements, client access patterns, the operating environment, and 

performance testing become important factors when choosing a vendor's ORB 

implementation. 

Table 5: ORB Multithreading Architecture Summary [56] 

Architecture Comments Advantages Disadvantages 
Thread-Per-Request Handles each cli- 

ent request as a 
separate thread of 

control. 

Straightforward to 
implement. 

Useful for long- 
duration requests. 

Consumes many 
OS resources for 

many clients. 
Inefficient for 
short-duration 

workloads - ex- 
pensive thread 
creation costs. 

Thread-Per-Connection Variation of thread 
per request. Each 
client connection 

has a separate 
thread of control. 

Straightforward to 
implement. 

Useful for long- 
duration requests. 

Does not load 
balance effec- 

tively. Can over- 
utilize connec- 

tion. 
Thread-Per-Servant Associates a thread 

with each servant 
(object instance). 

Useful to minimize 
rework of single- 

threaded servants. 

Does not load 
balance effec- 

tively. Can over- 
utilize servant. 

Thread-Pool Variation of thread 
per request. 

Amortizes thread 
creation costs. 

Must dedicate 
resources. 
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Event-based servers are a design approach that offers many advantages: 

1) no complicated resource locking, 2) no data corruption, and 3) minimal over- 

head [47]. Replacing all blocking I/O with event notification and distributed 

callback mechanisms increases server performance for short duration events, but 

event-based servers quickly lose these performance advantages when events take 

too long to process [47 and 50]. Event-based services are appropriate in distrib- 

uted environments where communication-oriented tasks such as web services or 

transferring small amounts of data are prevalent. Measuring an ORB's Event 

Loop throughput and comparing to a suitable multithreaded implementation 

would greatly aid our decision-making process for implementing server-side 

functionality for a particular operation. 

4.3 Experimental Design 

One point previously mentioned (§4.2.2 CORBA Performance Metrics), 

concerns the issue that an experimental result may vary widely depending on the 

operating environment (§5.3.2 Experimental Environment) and deployment 

model (§5.3.1 N-Tier Topologies) used for measurements. For measurements to 

be meaningful, these conditions must be recorded, e.g. a processor's clock rate 

alone inversely affects the machine's execution time since CPU Execution Time = 

Program Clock Cycles + Clock Rate [55]. 
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4.3.1 Factors 

To obtain unbiased results, the following factors are recorded for repro- 

ducibility purposes [45]. These factors can greatly impact the anticipated results 

from experimental reproduction or could possibly invalidate experimental data. 

Every attempt to reduce or eliminate the impact of these factors (§4.3.2 Mitiga- 

tion of Factors) is performed to ensure experimental integrity. 

1. High Resolution Global Time: The clocks on two different machines may not 

be correlated to a centralized time source. If global time is not achieved, cer- 

tain measurements cannot be accurately performed. 

2. Machine Utilization: Business applications typically share processor time 

with other applications, i.e. applications use timesharing. 

3. Network Utilization: While applications typically share processor time with 

other applications, machines must share network bandwidth with other ma- 

chines. 

4. LAN/WAN Interface Buffering: These experiments are performed using a 

100 Mbps Fast Ethernet internetwork. The overhead in processing data pack- 

ets for different communication protocols and rates is not considered. 

5. Data Security Implementation: These experiments are performed with no se- 

curity methods. The overhead in processing secure data packets along with 

any encryption mechanisms is not considered. 
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6. MICO IDL Compiler: MICO's IDL compiler and library support improves 

with each new release, and future versions may greatly affect the time to 

marshal and unmarshal data. Other IDL compilers may contain optimiza- 

tions, which may decrease data packing and unpacking time as well. 

7. Measurement Overhead: Obviously, a certain amount of overhead is incurred 

with the measurement activity. 

8. Time Constraints: This research report has a deadline. There is not enough 

time to try every possible optimization and measure/ analyze the results. 

9. Software Portability: The code should run with minimal effort on different 

operating platforms, e.g. all flavors of Unix (Linux, Sun, Solaris, etc.), mainly 

for reproduction of experiments and platform comparison purposes [48]. 

Sometimes, writing portable code may sacrifice program performance. 

4.3.2 Mitigation of Factors 

Mitigation of factors (§4.3.1 Factors) attempts to improve the documenta- 

tion of the experiments and reduces or eliminates the effects of each factor, 

greatly contributing to overall experiment validity. 

1. High Resolution Global Time: All machines are members of the same Win- 

dows 2000 domain model. Immediately before experiment execution, ma- 

chines will synchronize their clocks with the Domain Controller (DC). 
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2. Machine Utilization: Machine utilization is checked prior to experiment exe- 

cution. Only measurement applications, e.g. Windows 2000 performance 

monitor, are running besides the experiment. 

3. Network Utilization: Network utilization is checked prior to experiment exe- 

cution. Every attempt is made to use the operating environment while net- 

work utilization is minimal. 

4. MICOIDL Compiler: MICO's IDL compiler is the latest version. 

5. Measurement Overhead: The wallclock time required to take a time meas- 

urement is recorded and subtracted from the experiment's time. 

6. Software Portability: All CORBA code is written to the CORBA 2.3 specifica- 

tion with no proprietary hooks. Platform-specific Win32 API thread func- 

tionality is encapsulated in a single ThreadPool class (§5.4.1.3.1 Threaded), 

which isolates platform modifications to a single class. 

4.3.3 Clieni/Server Measurement Model 

Building a client/server measurement model to measure remote operation 

costs is a fairly straightforward process. Figure 32 shows experimental meas- 

urement points we could use in a typical client/server interaction. For each ex- 

periment, a table like Table 6 is used to record measurement data. For example, 

let Tmarshai be the time to marshal a particular data type on the client. To compute 

this time, we would use Tmarshai = T2 - Ti, where T2 is the time at measurement 

point two and Ti is the time at measurement point one. 
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Figure 32: Client/Server Measurement Model [49] 

Table 6: Remote Operation Costs 

Measurement Point Comment Operation 1,... ..., Operation 
N 

0 Client Execution time 
1 Before client marshal 
2 After client marshal 
3 Before server unmarshal 
4 After server unmarshal 
5 Before server marshal 
6 After server marshal 
7 Before client unmarshal 
8 After client unmarshal 
9 Server Execution time 

10 Bytes transferred to server 
11 Bytes transferred to client 

Network Utilization 
(Point 10) 

Bandwidth Used 

Network Utilization 
(Point 11) 

Bandwidth Used 

Total Operation Time 
Total Bytes Transferred 

4.3.4 Parameters 

Table 7 presents the parameters and values used to conduct TFMS ex- 

periments. Each parameter is described below: 
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1. Data Type: Three data types are used in the experiments. A simple double 

type, a Forecast structure, and a sequence of Forecasts are used to measure 

marshaling rate and normal versus bulk operation experiments. 

2. Number of Forecasts: A range of one to 1000 forecasts is used in the replica- 

tion and validation experiments. Bulk compared to normal operation per- 

formance is considered as well. 

3. FLOP (§4.2.1.2 Floating-Point Operations): Workload applied to a single func- 

tion or transaction. Workload ranges from 1000 to 10,000,000 FLOPS. 

4. Number of clients: A range of one to five clients is used for testing server-side 

performance. A client may be a thread or lightweight process. 

5. Number of business/collection servers: A range of one to seven servers is 

used to test both small and large distributed configurations. 

Table 7: Experiment Parameters 

Parameter Values 
Data Type double, forecast, sequence<forecast> 

Number of Forecasts 1,10,100, 200,300, 400, 500,1000 
FLOPS mo3, io*io3, loono3, i*io6, io*io6 

Number of Clients 1, 2,3,4,5 
Number of Servers 1,2,3,4,5,6,7 

Replication Algorithm CORBA Event Service, Pipeline, Primary Copy 
Operation Normal, Bulk 

6. Replication Algorithm: CORBA Event Service, Pipeline, and Primary Copy 

algorithm execution times are compared to determine which is most suitable 

for the TFMS. 
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7.   Operation: Normal versus bulk operations is compared to determine which is 

most appropriate for a given transaction. 

4.3.5 Measurements 

The experiments performed in this report follow a specially constructed 

test problem methodology [45]. The following metrics are used for the TFMS ex- 

periments: 

1. Execution Time (§4.2.1.1 Execution Time): The time elapsed between the be- 

ginning of the program to the last node's program execution [15]. 

2. FLOPS (§4.2.1.2 Floating-Point Operations): The number of floating-point op- 

erations executed by a single function or transaction per unit time. 

3. Throughput  (§4.2.1.3  Combinations  of  Basic  Metrics):  Number  of jobs 

(FLOPS, forecasts, or transactions) processed per unit time [10]. 

4. Network Utilization: Amount of bandwidth used as a percent of total band- 

width when executing inter-site experiments (Replication). 

4.3.6 Measurement Confidence Level 

To determine the number of measurements required for each experiment, 

ten sample measurements are taken to determine a mean and standard devia- 

tion. Once this information is computed, these values are used to determine the 

number of measurements required for a confidence level of 96 percent possessing 
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an accuracy of one percent from the mean.   Confidence limits for a population 

mean are given by [61]: 

X ± (Zc * S)/nV2 

Where X is the sample mean, Zc is the confidence level, S is the sample's 

standard deviation, and n is the number of samples. The quantity (Zc * S)/nV2 is 

also equal to the mean times the required accuracy p, so this becomes: 

X * p = (Zc * S)/nV2 

Therefore, the number of measurements required for an experiment can 

be found using the following formula (Zc = 2.05 for 96% confidence level [61]): 

n= [(2.05 *S)/(X* 0.01)]2 

4.4 Summary 

An important aspect of distributed system design involves performance 

measurement and determining the effectiveness of the design. This chapter dis- 

cusses basic and distributed system performance benchmarks, while also ad- 

dressing experimental design of the TFMS. All factors affecting the TFMS ex- 

perimental process are outlined. A client/server measurement model is exam- 

ined to uncover appropriate measurement points within the TFMS system. Fi- 

nally all experimental parameters and measurements are defined outlined. 

114 



V. Distributed System Implementation 

Programming is understanding. - Kristen Nygaard 

5.1 Introduction 

In the previous chapter, a design methodology was used to map business 

requirements to a software system. Software system implementation and ex- 

perimentation details are presented in this chapter. The implementation phase is 

used to map the software system to an operating environment. TFMS experi- 

ment implementation details, experimental operating environment, and transac- 

tion characteristics are explained and documented. Various distributed topolo- 

gies along with their inherent component placement tradeoffs are also examined. 

As previously noted (§1.7 Summary), the TFMS is a prototype CORBA applica- 

tion developed to quantify the impact of specific design decisions in a distributed 

environment. 

5.2 Software Development Environment 

The development tools used in this research are the MICO CORBA 2.3- 

compliant C++ implementation and Microsoft Visual Studio 6.0 Enterprise Edi- 

tion. The primary reasons for choosing these tools is convenience, familiarity, 

and lack of time to pursue other CORBA implementations (§4.3.1 Factors). Many 

CORBA vendors and CORBA-aware CASE tools exist. Most of these resources 

are available on the WWW [77]. 
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5.2.1 MICO 

MICO (stands for MICO is CORBA) is a freely available and fully compli- 

ant C++ implementation of CORBA version 2.3 [34]. MICO is compatible with a 

great number of operating platforms, using the native C++ compiler in most 

cases. To implement a CORBA application, CORBA IDL is specified and com- 

piled using the MICO IDL compiler. MICO generates the C++ mapping in the 

form of header and body files containing all the necessary CORBA code required 

for application implementation. Application developers must implement the vir- 

tual method definitions in these generated files to bind the CORBA interface 

definitions to C++ objects. 

5.2.2 Microsoft Visual Studio 6.0 - Enterprise Edition 

Microsoft Visual Studio 6.0 Enterprise edition includes Visual Modeler, a 

graphical OO design tool, and Visual C++, Microsoft's C++ development envi- 

ronment. Once the MICO IDL compiler compiles CORBA IDL into C++ header 

and body files, MICO libraries are configured in the VC++ development envi- 

ronment and application development continues as a normal VC++ project [34]. 

No compiler optimizations are applied to these experiments. Visual Modeler is 

used to create the TFMS object model and is the source of several figures shown 

in the report. Visual modeler is also used to generate skeleton code (class headers, 

constructors, method declarations, etc.) for C++ classes. 
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5.3 Deployment 

Deployment maps the software architecture to a specific operating envi- 

ronment. Within the operating environment, there usually exists a variety of 

ways to configure distributed components. 

5.3.1 N-Tier Topologies 

When deploying a distributed application, there are many ways to ar- 

range application components onto physical machines. The logical N-tier model 

shown in Figure 33 may be arranged in many different ways depending on ap- 

plication and performance requirements. 

Presentation Layer 

Business Layer 

Data Layer 

Presentation Layer: 
This layer establishes the 
user interface and handles 
user input and code to display 
application data. 

Business Layer: 
This layer applies business rules 
and logic required to perform 
application processing requirements. 

Data Layer: 
This layer is responsible for 
storing persistant application 
data, usually using a commercial DBMS. 
This layer is sometimes subdivided 
into two layers: an object cache and 
data storage layer. 

Figure 33: N-Tier Logical Model 

In this section, five physical implementations are discussed: 1) Two-Tier 

implementations with thick clients, 2) Two-Tier implementations with thick serv- 

ers, 3) Three-Tier implementations with thin clients, 4) Three-Tier implementa- 

tions with thick clients, and 5) N-Tier implementations. 
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Presentation Layer 

Business Layer 

Data Layer 

Data 

Figure 34: Two-Tier Thick Client 

A common method for deploying a client/server application is shown in 

Figure 34. This two-tier implementation uses thick 3 clients, where all business 

and presentation logic is physically executed on client machines. In this imple- 

mentation, the server acts as a traditional database server. A primary advantage 

with the thick client implementation is that user interface tools supporting this 

model are powerful and well established; e.g. Visual Basic is in its sixth major 

version [62]. A disadvantage with this implementation is that deploying all busi- 

ness logic on the client generally means more communication overhead because 

data must be moved to the client to apply business logic. Another disadvantage 

is that changes to business logic require recompilation of all clients. 

3 The term "FAT" or "Thick" generally refers to what system entity possesses the majority of the application logic. 
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Presentation Layer 

Data Layer 

Figure 35: Two-Tier Thick Server 

In a two-tier thick server implementation, business logic is physically exe- 

cuted on the server and is generally written as stored procedures and triggers 

within the database. For example, in the TPC-C benchmarks published for Mi- 

crosoft SQL Server, the core transaction logic is coded as stored procedures in the 

server [2]. The major advantage of a thick server implementation is performance. 

Business logic runs in the same address space as database code and is tightly in- 

tegrated with the database search engine, so data is not moved or copied before 

it's operated on, therefore rninirnizing network traffic. The main disadvantage of 

this implementation concerns scalability - application scalability is tied to the 

hardware platform where the server resides [7 and 8]. 
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Win32 Client 

Business Layer Data Layer Presentation Layer 

Business Layer 

CZ                   JI5} 

Data 

Figure 36: Three-Tier Thick Client 

The key distinction of a three-tier implementation is the existence of a 

processing boundary; between the data, business, and presentation layers; this 

processing boundary may be physical or logical, i.e. different physical machines 

or different address spaces on the same physical machine [7]. Transaction proc- 

essing and object transaction monitors (TPM and OTM respectively) such as Mi- 

crosoft's MTS and BE A System's Tuxedo/M3 products use this topology to pro- 

vide process, transaction, communications, and load balancing services for large 

transaction-oriented, e.g. financial, distributed environments [7]. 

The three-tier thick client implementation in Figure 36 shows business 

logic residing in a client address space, while other business logic resides in a 

separate address space on a different physical machine. If the business logic is 

computationally expensive, requiring a lot of processor time or physical mem- 

ory, it's usually advantageous to locate these functions on one or more physically 

separate machines to minimize resource contention, increase processing effi- 
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ciency, and decrease overall application execution time [15]. The potential scal- 

ability gain may be offset by the additional communication cost involved with 

moving data to middle-tier machines, so care must be taken when physically par- 

titioning the application (§4.2.2 CORBA Performance Metrics). Another dimen- 

sion of application scalability is added by three-tier applications accessing dis- 

tributed databases, i.e. databases physically partitioned across multiple machines 

(§2.5.1 Architectures). Partitioning databases in this manner, however, intro- 

duces enormous complexities into the application and is not a widespread prac- 

tice in industry today [62]. 

Web Browser Presentation Layer 

Business Layer 

Data Layer 

Data 

Figure 37: Three-Tier Thin Client 

Figure 37 shows the topology for a three-tier thin client, i.e. Internet im- 

plementation. Internet implementations typically execute both business and 

presentation services using a Web server in the middle layer. Some products, 

e.g. WebLogic's Tengah architecture, execute the business logic on the Web 

server as well, i.e. in the same address space, thus avoiding the additional call 
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overhead associated with crossing an additional process boundary [63]. One key 

advantage of Internet implementations is that anybody with a browser can access 

these applications. Standard Web browsers provide all required client function- 

ality. Application evolution and upgrades are easily managed as well, since an 

update to the Web server automatically updates all clients. This is in sharp con- 

trast to managing thick clients, where upgrades may affect application code at 

many 4 clients. 

Presentation Layer Data Layer 

c  

Data 

Business Layer Data Layer 

£-- —z 

Data 

Figure 38: N-Tier Component Model 

Figure 38 shows a topology where we lose the distinction of numbering 

the layers into a three-tier processing environment. In the N-tier topology, we 

start using white page (OMG Naming service), yellow page (OMG Trader and 

Query Services) directories, and smart component (agent) interactions as the ba- 

sis for our application's behavior [8 and 14]. The same advan- 

tages/disadvantages discussed above exist with the N-tier topology as well, but 

4 The use of the word "many" here denotes the typical Internet user population. 
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with N-tier distributed applications, the component is the primary autonomous 

entity in the system [17]. 

5.3.2 Experimental Environment 

The AFIT Bimodal cluster consists of 21 PCs: four PII-333MHz, seven PII- 

400Mhz, one PII-450MHz, eight PIII-600MHz, and one dual PIII-550MHz sym- 

metrical multiprocessors (SMP). All hardware platforms possess at least 128 MB 

of memory, 512K level one cache, and 100Mbps PCI network interface cards. The 

Pile of PCs (PPCs) can boot Red Hat 6.0 Linux or Microsoft Windows 2000 (bi- 

modal), and both platforms support CORBA-based application development us- 

ing MICO [34]. Windows 2000, beta release 3 is used for all experiments. The 

cluster interconnection network currently uses two 100Mbps, 24-port Intel Ex- 

press Fast Ethernet switches uplinked to a six-port Intel Gigabit switch. 

5.3.3 Component Implementation 

This section describes component implementation for TFMS experimenta- 

tion. Functionality and interaction for the TFMS name server, test generator, 

TFMS business servers, and TFMS collection servers are described. 

5.3.3.1 CORBA Name Server 

A CORBA Name server provides a mapping of server names to object ref- 

erences, similar to the Internet Domain Name Service, which maps Internet do- 

main names to IP addresses [21]. A name binding is a name-to-reference associa- 
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tion and a name context is an associative object that stores name bindings, typi- 

cally implemented as a lookup table. The CORBA Naming Service is used in this 

research to advertise business and collection servers, solving the problem of how 

TFMS components get object references at runtime. Figure 39 shows a typical 

CORBA lookup operation the test generator performs to obtain a TFMS business 

server reference. A TFMS business server obtains collection server handles using 

the same sequence of operations. 

2. Resolve name 

object = root->resolve(Business1);  

Test Generator 
TFMS Name Server 

(Businessl, Reference) 

3. Narrow to a business server Interface 
Business_var Businessl; 
Businessl = Business_narrow(object); 

4. Invoke operation 

Business1->validateTAF(TAF); 

1. Create a binding 

root->bind(Business1, Reference) 

TFMS Business Server 
(Businessl) 

Figure 39: Resolving TFMS Component Names 

5.3.3.2 Test Generator 

The test generator simulates multiple clients in the TFMS, offering the ex- 

perimenter various options for testing different functions, e.g. ORB benchmarks 

or publication algorithm experiments in the distributed system. The test genera- 

tor invokes CORBA operations on business and collection servers after obtaining 

interface references from the TFMS Name Server. 
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5.3.3.3 Business Server 

The business server implements TFMS middle-tier services needed for 

TAF validation and publication. Business servers add themselves to the distrib- 

uted system by registering their interfaces with the TFMS name server (§5.3.3.1 

CORBA Name Server). All forecasts submitted for validation and publication 

use the TFMS business server. Business servers invoke CORBA operations on ei- 

ther business (validation function distribution) or collection (publication experi- 

ments) servers by obtaining interface references during runtime from the TFMS 

Name Server. 

5.3.3.4 Collection Server 

The collection server implements the data object layer associated with the 

data tier of the TFMS N-tier topology. The collection server maintains cache col- 

lections needed to provide high availability and performance [12, 41, and 43]. 

Collection servers add themselves to the distributed system by registering their 

interfaces with the TFMS name server (§5.3.3.1 CORBA Name Server). 

5.3.4 Component Deployment 

Figure 40 shows one TFMS deployment using the AFIT PPCs (§5.3.2 Ex- 

perimental Environment). This deployment maps the test generator, name, 

business, and collection servers onto four distinct nodes (separate physical ma- 

chines) running the Microsoft Windows 2000 operating system. A number of dif- 

125 



ferent test configurations are executed by deploying the appropriate number of 

business and collection servers, then selecting the appropriate test option from 

the test generator menu. This methodology is a convenient way to enable repro- 

ducibility or to perform cross-platform comparison [48]. 

1 Gbps - Ethernet 

100Mbps - Ethernet 

Windows 2000, Beta Release 3 
Pentium III 600 Mhz 

372 MB RAM 
100 Mbps PCI NIC 

3 

Test Generator 

400Mbps - Ethernet 
a 

I IUÜ 
Server 

■ < 

Windows 2000, Beta Release 3 
Pentium III Dual 550 Mhz 

372 MB RAM 
1 Gbps PCI NIC 

Name/Threaded Server 

Windows 2000, Beta Release 3 
Pentium III 600 Mhz 

372 MB RAM 
^ 100 Mbps PCI NIC 

fcrera 
Server 

Business Servers 

Figure 40: TFMS Deployment Diagram 

ä c=ma 
Server 

Collection Servers 

5.4 Experiments 

This section addresses the objectives of each experiment and the steps 

taken to implement the experiment. Data collection for each experiment is im- 

plemented by using C++ STL containers and algorithms encapsulated in an Av- 

erage class. The Average class implementation is shown in Figure 41. Clients are 

required to collect measurements in a STL vector container. The collect function 

takes a reference to the client's measurement vector and a file name. Measure- 
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ments are summed using the STL accumulate algorithm and divided by the size 

of the times vector to calculate the average. The sum, number of measurements, 

average, and all raw data are then saved to the file name provided by the client. 

All experiments in this research gather measurements non-intrusively in mem- 

ory and then use this methodology to save experimental results. The number of 

iterations for experiment execution is determined using sample means and stan- 

dard deviations from pilot transactions (§4.3.6 Measurement Confidence Level). 

Although some transactions required far fewer iterations, the minimum number 

of iterations for all experiments is the worst-case value of 100. 

#include <numeric> 
^include <fstream> 
#include "Aver age. h" 

Aver age:: Aver age0 { } 

void Average: :collect(vector<double> &d, char* s) 
{ 

times = d; 
afstream outfile(s, ios_base::app); 

// Accumulate results 
double sum = accumulate(tim es. beging), times. endO, O.CT); 

//Compute average 
double average = sum/times.sizeO; 

// S ave to file 
outiile. s etfi^io s_base:: fix e d, io s_base:: flo atfiel d); 
outfile « "Sum: " « sum « endl; 
outiile << "Measurements: " « times.size0 « endl; 
outfile. setfl^ios_base:: fixed, ios_base::floatfield); 
outfile << "Average: " « average « endl; 

outfile.setfl^ios_base::fixed, ios_base::floatfield); 
outfile« "Data: "; 
typedef vector< double>:: const_iterator T; 
for (T t=times.begi»Q; t!=times.end();++t) 
{ 

outfile.setfl^ios_base: :fixe d, ios_base:: flo atfiel d); 
outfile << *t<< ","// dereference value at iterator t 

} 
outfile « "\n" « endl; 

Figure 41: Average Class 
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5.4.1 ORB Benchmark Transactions 

The objective of the ORB benchmark experiments is to determine a par- 

ticular ORB's design limitations to aid the distributed object system engineering 

process (§4.2.2 CORBA Performance Metrics). Four ORB benchmarks are im- 

plemented: call latency, marshaling rate, server-side performance, and name 

server performance. Figure 42 graphically depicts ORB benchmark transactions. 

5.4.1.1 Call Latency 

The objective of this experiment is to determine the cost of a MICO ORB 

remote and local call. These measurements are required to compute relative effi- 

ciency for component placement within the distributed system (§4.2.2.1 Call La- 

tency). 

Presentation Layer 

MenuCommand 

♦executeQ 

Ä" 
— --> 

calls' 

/    \ 
/ \ ThreadPool 

BenchMarkControl 

Executes each ORB      N 
benchmark transaction. 

\ 
\ 
A 

ClientControl 

Business Layer 

<<CORBA Interface>> 
Benchmark 

♦oneway void caJRateO 
♦void marshalDoublefin double d) 
♦void marshalTAF(in TAFdata t) 
♦void marshalBulkfln sequence<TAFdata> st) 
♦void singlethread(in unsigned long workload) 
♦void multithread(in unsigned bng worktoad) 

Benchmarkjmpl 

v    \ 
Each CORBA operation ^ 
implemented by Benchmark_impl. 

calls calls \ 
MultrrhreadCommand 

H. 
Sing leThre ad Command 

Figure 42: Call, Marshaling Rate, and Server Performance Transactions 

The call latency transaction is implemented using the following steps: 
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1. Prerequisites: Two machines are chosen for this test. The machine's clocks 

are synchronized with the Windows 2000 Domain Controller (DC). One ma- 

chine hosts the benchmark server process and a remote machine hosts the test 

generator. The benchmark server binds and the test generator resolves inter- 

face handles using the TFMS name server upon startup. 

2. The experimenter selects the ORB benchmark test when prompted by the test 

generator. 

3. As shown in Figure 42, the test generator instantiates a BenchmarkControl ob- 

ject to control experiment execution. 

4. The BenchmarkControl object records a transaction start time, and then calls 

the benchmark interface callRate operation on the remote machine. 

5. The BenchmarkControl object records a transaction stop time. 

6. The total time to complete the transaction is calculated by the BenchmarkCon- 

trol object and saved to its measurement vector in memory. 

7. The BenchmarkControl object repeats steps four through six 100 times to obtain 

measurement confidence before saving all test results as discussed previously 

(§5.4 Experiments). 

8. These steps are repeated for a benchmark server process loaded on the same 

physical machine to determine the LPC dispatch rate. 
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5.4.1.2 Marshaling Rate 

The objective of this experiment is to determine the rate that the MICO 

ORB can transmit and receive TFMS data types over the distributed network 

(§4.2.2.2 Marshaling Rate). Since the data-marshaling rate depends upon the 

data type being transmitted over the network, three marshaling rate transactions 

are executed [21]. The first transaction is for a double-precision floating-point 

number. The second transaction is for a TAF data structure. The last transaction 

concerns bulk TAF data structure transfers using the OMG IDL sequence type. 

All marshaling rate transactions implement steps one through seven of the call 

latency transaction, with the appropriate operation invoked in step four. 

5.4.1.3 Server-Side Performance 

In this experiment, the CORBA Event Loop (main thread) throughput is 

measured and compared to a thread-per-request multithreaded implementation 

(§4.2.2.3 Server-Side Performance). The experiment's objective is to determine 

the server workload where a multithreaded ORB implementation improves 

overall server throughput and response time for multiple clients. 

5.4.1.3.1 Threaded 

The threaded transaction uses the TFMS delegation layer (§3.5.2.4 Delega- 

tion Module) and is implemented using the following steps: 
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1. Prerequisites: Two machines are chosen for this test. The machine's clocks 

are synchronized with the Windows 2000 DC. A benchmark server and test 

generator process is loaded on different physical machines. The TFMS name 

server provides runtime location transparency. 

2. As shown in Figure 42, the test generator instantiates a BenchmarkControl ob- 

ject as in previous tests. The BenchmarkControl object then instantiates a Cli- 

entControl object with a handle to the benchmark server process. 

3. The BenchmarkControl records a transaction start time. Note: The ClientControl 

object inherits thread functionality from the ThreadPool object, which encapsu- 

lates all TFMS Win32 thread functionality. Figure 43 shows the interface for 

the ThreadPool object. 

Ändude <windows.h> 

dass ThreadPool 
{ 
public: 

Thread PoolO; 
-ThreadPool 0; 
static DWORD WINAPIThreaded(LPVOID); 
void CreateRunningThreads(int number); 
void CreateSuspendedThreads(int number); 
void StartThread(y/starts suspended thread from pool 
void StarfThreadsO;// starts entire thread pool 
void WaitForThreadsExitO//normally called after CreateSuspendedThreads 

// to control thread execution 

protected: 
HANDLE »„Threads; 
DWORD  Jlhreadld; 
int _number, 
virtual DWORD ThreadFunctionO;// subclasses must override 
void AddThreadToPoolO;// maintains pool size 

Figure 43: Thread Pool Class 

4.   The BenchmarkControl object calls the ThreadPool CreateRunningThreads mem- 

ber function, which creates a pool of 1,2,3,4, and 5 threads (clients). 
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5. Each thread executes the overridden ClientControl ThreadFunction member 

function which calls the benchmark interface multithread operation and passes 

a 1,10,100,1000, and 10000 (thousands of FLOPS) workload parameter to the 

server. 

6. The benchmark server dispatches a MultiThreadCommand object to perform 

the client's requested computation. The MultiThreadCommand object also in- 

herits thread functionality from ThreadPool, but calls CreateRunningThreads(l) 

in its constructor to start one thread immediately to perform the FLOP com- 

putation. A call to WaitForThreadsExit in its destructor ensures clean resource 

deallocation upon termination. 

7. The BenchmarkControl object waits for all client threads to complete by calling 

the ThreadPool WaitForThreadsExit member function. 

8. The total time to complete the transaction is calculated by the BenchmarkCon- 

trol object and saved to its measurement vector in memory. 

9. The BenchmarkControl object repeats steps four through seven 100 times to ob- 

tain measurement confidence before saving all test results (§5.4 Experiments). 

5.4.1.3.2 Event Loop 

The Event Loop transaction is implemented in exactly the same manner 

using a single-threaded server implementation. A SingleThreadCommand object is 

dispatched for each request, but this class uses the ORB's main thread (Event 

Loop) to execute a requested client's computation.   The SingleThreadCommand 

132 



does not execute in its own thread of control as the MultiThreadCommand object 

does in the multi-threaded experiment. 

5.4.1.4 Name Server Performance 

Name Server performance tests the effect of name binding and resolution 

as the number of name context bindings increases from one to 32,000. 

5.4.2 Publication Transaction 

The publication experiment considers replication algorithms suitable to 

perform the TFMS forecast replication function. Characteristics: 1) forecasts are 

validated at the originating OWS, so validated forecasts are treated as read-only 

data and 2) forecasts are replicated to all OWS and equivalent centers to meet 

performance and availability requirements for TFMS customers. Two replication 

algorithms are tested: 1) CORBA Event Service and 2) primary copy. 

In the OMG Event Service, suppliers produce events and consumers re- 

ceive events. Both suppliers and consumers connect to an event channel. The 

event channel is central to the event service and conveys events between suppli- 

ers and consumers without requiring suppliers and consumers to have knowl- 

edge of one another [21]. Four models support event delivery: canonical push, 

canonical pull, and two hybrid push/pull or pull/push models. 
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Figure 44: Canonical Push Model 

Figure 44 is a representation of the canonical push model that maps to the 

distributed characteristics as listed above. In the canonical push model, publica- 

tion agents (suppliers) push events to the event channel. The event channel 

pushes these events in turn to notification agents (consumers). 

In the primary copy algorithm shown in Figure 45, a particular publica- 

tion agent serves as the primary server for forecasts entered and validated in their 

region. The publication agent serves as the coordinator and must have knowledge 

of notification agents or collection modules (depending on implementation) to 

replicate forecasts to them. The publication agent is multi-threaded to improve 

performance. 
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Primary Gopy Replication Algorithm 

PublicationAgent 
<<CORBA Interfece>> 

CollectionService 

Publication agent 
(Bushess Module) 3 

Figure 45: Primary Copy Algorithm 

An alternative algorithm is shown in Figure 46, where the replication is 

performed in tree-like fashion. Each publication agent sends forecasts to only a 

few other OWS centers (its children), who then send forecasts to its children and 

so forth. This forms a hierarchical pipeline distribution pattern where knowl- 

edge of other notification agents is kept to a minimum. 

Pipetned (Heirarchical) Repfcation 

NotificationAgent NotficationAgent NotificatiaiAgent 

PubtationAgent 
«CORBA Interface» 

CotectjonService 

Notification Agents ^ 
(Collection Module) 

Publication agent    t^ 
(Business Module) NotficationAgent 

->■ 

NoticatjonAggit NotificationAgent 

Figure 46: Pipelined Publication 
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The objective of this experiment is to determine which replication algo- 

rithm is suitable for TFMS forecast data based on minimum communication time 

and maximum flexibility. Publication transactions involve these steps: 

1. Prerequisites: Up to eight machines are chosen for this test. The machine's 

clocks are synchronized with the Windows 2000 DC. The test generator and 

one business server are loaded on one machine; and 3, 5, and 7 collection 

servers are loaded on different physical machines. The collection and busi- 

ness servers all bind to the TFMS name server on startup. 

2. The test generator instantiates a PublishControl object. 

3. The PublishControl object records a transaction start time, and then calls the 

business server's publish method sending a sequence of 1, 10, 100, and 1000 

forecasts as shown in Figure 47. 

4. The business server instantiates a PublishCommand object, passing it the fore- 

cast data and algorithm to perform. 

5. The PublishCommand object calls the publication module's publish method, 

passing along the forecast data and algorithm. 

6. If the algorithm is primary copy, the collection server's add method is called 

with the sequence of forecast data. The collection server instantiates a Forecast 

object for each forecast then inserts the object in the cache collection to com- 

plete the transaction. 
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Figure 47: Publication Transactions 

7. If the algorithm is event channel, the sequence of forecast data is published 

using the CORBA Event Channel. A NotificationAgent receives the sequence 

of forecast data using the Event Channel, then calls the add method for inser- 

tion as in the previous step. 

8. The total time to complete the transaction is calculated by the PublishControl 

object and written to a file upon test completion.   The PublishControl object 
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repeats this sequence 100 times to obtain measurement confidence before re- 

turning control back to the experimenter. 

5.4.3 Validation Transaction 

Figure 48 shows the validation transaction. The objective of this experi- 

ment is to determine the execution time and efficiency for forecast validation us- 

ing single forecasts, then bulk validation requests of 10,100, and 1000 forecasts. 

The forecast validation function is then distributed over 2, 3, 4, and 5 processors 

to determine if the TFMS validation function will benefit from distributed proc- 

essing methods. 
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Figure 48: Validation Transaction 

The validation transaction is implemented using the following steps: 
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1. Prerequisites: Six machines are chosen for this test. The machine's clocks are 

synchronized with the Windows 2000 DC. One test generator and five busi- 

ness servers are loaded on different physical machines. The business servers 

all bind to the TFMS name server on startup. 

2. The experimenter selects the validation test when prompted by the test gen- 

erator. 

3. As shown in Figure 48, the test generator instantiates a ValidateControl object. 

The test generator creates and synchronizes 1, 2, 3, 4, or 5 threaded Validate- 

Control objects as validation control agents. Each ValidateControl object is in- 

stantiated with a handle to a business server process. 

4. Once all threads are created and synchronized, the test generator records a 

transaction start time and then releases the thread barrier. Each ValidateCon- 

trol object calls the IRBusiness interface validate operation and passes the 

server 1,10,100, or 1000 forecasts. 

5. The total time to complete all validation requests is calculated by the test gen- 

erator and written to a file upon test completion. The test generator repeats 

this sequence 100 times to obtain measurement confidence before returning 

control back to the experimenter. 

5.4.4 Submit Transaction 

Integration testing involves testing TFMS module interfaces to make sure 

they actually can communicate with each other without losing data or sacrificing 
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system functionality [6]. System testing involves functional, load, and perform- 

ance tests of the integrated TFMS distributed software system to ensure customer 

requirements have been effectively met [76]. In this research, one effectiveness 

transaction is implemented: the submit transaction (§3.4.2.4 Transaction Model). 

Figure 49 shows the submit transaction. The objective of this experiment 

is to determine the execution time for submitting forecasts for validation, publi- 

cation, and data collection within an OWS regional processing center. As with 

the validation experiment, single forecasts, then bulk update operations of 10, 

100, and 1000 forecasts are tested. The validation function is distributed over 1, 

3, and 5 processors to determine if distributed processing is appropriate within 

an OWS site. 

The submit transaction is implemented using the following steps: 

1. Prerequisites: Seven machines are chosen for this test. The machine's clocks 

are synchronized with the Windows 2000 DC. One test generator, one collec- 

tion server, and five business servers are loaded on different physical ma- 

chines. The collection and business servers all bind to the TFMS name server 

on startup. 

2. The experimenter selects the integration test when prompted by the test gen- 

erator. 

3. As shown in Figure 49, the test generator instantiates a SubmitControl object. 

The SubmitControl object creates and synchronizes 1, 3, or 5 threaded Submit- 
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Thread objects as update control agents. Each SubmitThread object is provided 

a handle to a business server process. 
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Figure 49: Submit Transaction 

4. Each SubmitControl object calls the IRBusiness interface submit operation and 

passes the server 1,10,100, or 1000 forecasts for entry into the TFMS distrib- 

uted system. 

5. Once validated, the validation module publishes the forecasts using the Event 

Channel as previously discussed. 

6. The total time to complete all update operations is calculated by the test gen- 

erator and written to a file upon test completion. The test generator repeats 
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this sequence 100 times to obtain measurement confidence before returning 

control back to the experimenter. 

5.5 Summary 

In this chapter, the distributed TFMS implementation details are discussed 

in great detail. Both experimental operating environment and transaction char- 

acteristics are presented and documented. The N-tier topology used to test the 

TFMS is also shown and implementation issues concerning various distributed 

topologies along with their inherent component placement tradeoffs are also ex- 

plained. 
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VI. Collected Data Analysis 

The purpose of computing is insight, not numbers. - R.W. Hamming 

6.1 Introduction 

In this chapter, results based on experimental design and implementation 

are presented and discussed (§4.3 Experimental Design, §5.4 Experiments). 

CORBA benchmark transaction results are shown and the impact of measuring 

call dispatch rate, marshaling rate, server-side throughput, and Name Server per- 

formance is discussed in the context of overall distributed system design. Fore- 

cast publication and validation results are presented and the efficacy of flexible 

system design is addressed in the context of federating these services within the 

distributed TFMS [21]. 

6.2 ORB Experiments 

The objective of the call latency experiment is to determine the cost of a 

MICO ORB remote call relative to a local call in the same address space. These 

measurements enable relative efficiency to be computed to aid component 

placement decisions within a particular operating environment (§5.3.2 Experi- 

mental Environment). The dispatch rate that a particular ORB can deliver sets a 

fundamental design limit on a distributed application [21]. 

Figures 50 and 51 show a remote call latency of 0.000088 seconds and a lo- 

cal call latency of 0.00000081 seconds, which correspond to maximum call dis- 
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patch rates of 11,364 calls/sec for the MICO ORB and 1,234,568 calls/sec for local 

calls. These results reflect the fact that a remote call using the MICO ORB is 100 

times more expensive than a local call. 
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Figure 51: Remote and Local Procedure Call Rates 

The Relative Efficiency (RE) for a parameterless remote operation in this 

experimental environment is given by (§4.2.2.1 Call Latency): 

RE~= Operation runtime/ (0.000088 + Operation runtime) 
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The objective of the marshaling rate experiments is to determine the cost 

of transmitting and receiving various data types used within the TFMS experi- 

mental environment (§5.3.2 Experimental Environment). These measurements 

enable a designer to determine the most efficient way to pass data within a given 

distributed environment. The dispatch rates for various data types communi- 

cated in the distributed system also serve as fundamental design limits for a par- 

ticular ORB. 
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Figure 52: MICO ORB Marshaling Latency 

Figures 52 and 53 shows the latency and dispatch rates associated with 

marshaling double, single Forecast, 10 Forecast sequence, 100 Forecast sequence, 

and 1000 Forecast sequence data types. Latency and dispatch rates are fairly 

consistent for the double, single Forecast, and 10 Forecast sequence data types, 

but latency noticeably increases and the corresponding dispatch rates noticeably 

decrease for larger data types. 
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Figure 53: MICO ORB Marshaling Rates 

These results follow from using an Ethernet network topology (§4.3.1 Fac- 

tors, §5.3.2 Experimental Environment). An Ethernet frame can transmit a 

maximum of 1500 bytes of data [10]. Using the C++ sizeof operator, a TFMS 

Forecast data type is 108 bytes and a MICO sequence data type is 16 bytes. A10 

Forecast sequence requires 1096 data bytes, so this easily fits within one Ethernet 

frame and does not cause increased latency due to data fragmentation as indi- 

cated by the 100 or 1000 Forecast sequence results. To find the sequence size or 

multiple of this size, which maximizes data transmission efficiency, knowledge 

of the network topology and data characteristics, is required. Since the Ethernet 

data frame consists of a 1500 byte maximum, a MICO sequence type is 16 bytes, 

and a TFMS Forecast is 108 bytes, (1500 - 16)/108 or a 13 Forecast sequence 

makes the most use of the given network topology. 
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The objective of comparing a single-threaded with a thread-per-request 

server implementation is to determine the point where multithreading an appli- 

cation results in improved client response time and throughput (§4.2.2.3 Server- 

Side Performance). These measurements enable a designer to determine if a mul- 

tithreaded approach improves performance for a particular operation or module 

within a given distributed environment. 
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Figure 54: Server Response Time Comparison - 5 Clients 

Figures 54 and 55 shows the response time and throughput for 1,10,100, 

1000, and 10000 KFLOP workloads executed on a dual PHI 550Mhz machine with 

256MB of memory. The workload that fully utilizes the server is determined by 

computing the efficiency of the operation. Using the remote call latency meas- 

urement of 0.000088 seconds to compute relative efficiency, Table 8 shows that a 

single-threaded server is underutilized for the 10 KFLOP workload, but is fully 

utilized for the 1 MFLOP workload! 
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Table 8: Workload Efficiencies 

Workload Execution Time Efficiency 
10 KFLOP 0.00047 0.84 

100 KFLOP 0.00455 0.98 
1 MFLOP 0.0454 0.998 
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Figure 55: Server Throughput Comparison - 5 Clients 

Figures 54 and 55 support this analysis where it's clear that multithread- 

ing the server decreases response time and increases overall throughput as work- 

loads increase above 100 KFLOP. These results follow from using a symmetrical 

processor, i.e. a higher degree of machine scalability, where the multi-threaded 

application scales better with the additional processor. This improvement is due 

to true concurrency, where threads are executing at the same time on different 

processors. 

The purpose of OMG Naming Service tests is to determine if name bind- 

ing and resolution latency is dependent on the number of bindings in a single 

name context as the name bindings increases from one to 32,000. This test helps 
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designers determine the impact and cost of binding and resolving CORBA object 

references to a given vendor's Naming Service implementation. 

MICO Name Server Performance 

■o c 
o u 
CD 

0.81 

075 —m m ft—-A——*—- ■# 

f)7 
• 1 1 ■ §-"" 

V.I 
1 4,000 8,000 32,000 

Bind 0.741 0.743 0.745 0.756 

Resolve 0.729 0.728 0.732 0.744 

-♦-Bind 

-»-Resolve 

Number of Bindings 

Figure 56: MICO Name Server Performance 

As Figure 56 illustrates, the MICO naming service implementation shows 

no dramatic increase in name binding or resolution latency as the number of 

name bindings increases. This indicates that binding and resolution latency is 

not dependent on the number of name bindings. Measurement variation for the 

experiment is 0.1 percent. 

6.3 Publication Experiments 

The objective of TFMS publication experiments is to determine a suitable 

replication algorithm to disseminate TFMS weather data, based on minimum 

communication time and maximum flexibility. First, the effect of call overhead is in- 

vestigated and its impact on TFMS distributed system design is shown. Figure 

57 shows the cost of sending 1,10, and 100 singular forecasts as compared to a 
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bulk transfer of equal size. The publication results for a single forecast start off 

equal, but larger forecast transfers result in excessive communication costs asso- 

ciated with the marshaling latency for a single forecast (§6.2 ORB Experiments). 

These results confirm the importance of designing remote interface operations 

with bulk data transfer support. 
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Figure 57: Effect of Message Reduction 

The primary copy and the MICO OMG Event Service publication execu- 

tion times for 1,10, and 100 forecasts are shown in Figures 58 and 59. The num- 

ber of collection servers (receiving sites) ranged from one to seven. The primary 

copy and Event Service algorithm used one business server to publish Forecasts 

to collection servers. 
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Primary Copy Algorithm - Bulk Transfers 
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Figure 58: Primary Copy Bulk Data Transfers -1,10,100 Forecasts 
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Figure 59: MICO Event Service Bulk Data Transfers -1,10,100 Forecasts 

As shown in Figure 58 and 60, the primary copy execution times increased 

linearly with the number of forecasts and collection servers. The MICO Event 

Service, shown in Figures 59 and 61, displays the lowest communication time 

and exhibits problem-size scalability when publishing all forecast data sizes to 1, 

3, or 5 collection sites. However, publishing 100 or 1000 forecasts to seven collec- 

tion sites does place a noticeable load on the publication event channel. If using 
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an Event Service, it's important to test its fan-out capacity, which typically means 

to further stress the channel by increasing event occurrence or size (forecasts) 

and consumer size (collection sites). The MICO Event Service is scalable for all 

forecast sizes up to five collection sites, but larger data sizes of 100 and 1000 fore- 

casts stress the event channel when additional consumers subscribe for publica- 

tion events. Figures 59 and 61 show this behavior for these larger data and con- 

sumer sizes. 
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As stated previously (§5.4.2 Publication Transaction), the primary copy 

algorithm requires knowledge of collection server names in order to obtain 

module references from the TFMS Name server. While the use of a name server 

does provide location independence by resolving references at runtime, the 

Event Service has the advantage of completely decoupling publishers from con- 

sumers, adding to business and collection module autonomy [12 and 21]. 

6.4 Validation Experiments 

The objective of forecast validation experiments is to determine the execu- 

tion time for forecast validation using single forecasts, then bulk validation re- 

quests of 10,100, and 1000 forecasts on a single machine. The validation function 

is then distributed over 2, 3, 4, and 5 processors to determine the benefit of dis- 

tributed processing, if any. As discussed previously (§3.4.2.5 Granularity), indi- 

vidual validation rules may be distributed, or the entire module itself. This ex- 

periment considered distribution of the validation module, which requires 0.0044 

seconds to validate one forecast. 

Figures 62 and 64 show the execution times for validating 1,10,100, and 

1000 forecasts using 1, 2, 3, 4, or 5 validation modules. An important aspect of 

distributed processing is scalability, or the ability to maintain efficiency as the 

problem size and number of processors increase [15]. Figures 63 and 65 show the 

corresponding efficiency for Figures 62 and 64. 
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Efficiency is given by: 

E = Ts/pTp 

Where Ts is the serial execution time, p is the number of processors, and 

Tp is the parallel execution time [14]. Tp is further decomposed into a computa- 

tional (Ts) and overhead (To) component. Marshaling latency is part of the over- 

head component in this equation. 
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As shown in Figures 62 and 63, the 100 forecast problem size definitely 

benefits from distributed processing with its corresponding efficiency generally 

maintained for increases in the number of processors. One and ten forecast sizes 

do not maintain their corresponding efficiencies as the number of processors are 

increased; this indicates that overhead time is dominating useful computational 

(validation) time for these problem sizes. 
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Forecast Validation Efficiency 
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Figure 63: Validation Efficiency -1,10,100 Forecasts 

In Figures 64 and 65, the 1000 forecast problem size also shows a decrease 

in overall execution time with its corresponding efficiency generally maintained 

for increases in the number of processors. 
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Forecast Validation Efficiency 
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Figure 65: Validation Efficiency -1000 Forecasts 

An interesting experiment result is the sharp drop in efficiency for all 

problem sizes when the number of processors is two. Once again, this is due to 

the operation's overhead time dominating computational time. For example, in 

the case of a 1000 forecast problem size for two processors, 500 forecasts are sent 

to each processor for validation. For three processors, 333 forecasts are sent to 

two processors, while 334 are sent to the third, and so on. 

The validation experiment uses a multi-threaded client to distribute the 

statically balanced load to on-line validation modules, i.e. a separate thread is 

used to send the forecast load to each validation module and is subject to the 

scheduling policies of the underlying operating system, Win32 in this case. Each 

thread has its own overhead associated with it, e.g. creation time, waiting to run 

time, communication time. Since there is no distinction in thread priority, Win32 

uses a time quantum (round-robin) scheduling scheme to give each thread execu- 

tion time [11].   In the case of two processors the thread's overhead associated 
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with buffering and transmitting larger forecast sizes, appear to cause the lower 

efficiency relative to using a higher number of processors with lesser communi- 

cation requirements. The forecast size is also substantial enough in the two- 

processor case to cause a lower efficiency than the single processor, since both 

threads compete for processor time, while no competition occurs for the single 

processor. These results show that for larger forecast sizes, validation distribu- 

tion is scalable when using 3,4, or 5 processors, but efficiency suffers when using 

two processors for forecast validation, assuming a multi-threaded distribution 

mechanism as previously discussed. 

6.5 Integration and System Experiments 

The objective of integration and system experiments is to put the TFMS 

modules together and test system identified transactions (§3.4.1.2 Functional De- 

scription). This research tests the submit transaction (§3.4.2.4 Transaction Model, 

§5.4.4 Submit Transaction). As with the validation experiment, single forecasts, 

then bulk update operations of 10,100, and 1000 forecasts are tested. The submit 

transaction is deployed using a N-tier topology (§5.3.1 N-Tier Topologies), where 

1, 3 and 5 processors are used as business layers, which validate and publish 

forecasts using the Event channel algorithm, and one processor is used as the 

data layer, which adds forecasts to an object cache. 

As shown in Figures 66 and 67, execution times decrease significantly 

when submitting 100 and 1000 forecasts to three processors, but the rate of de- 
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crease starts to flatten out for five processors. These results generally follow the 

validation experiment results, since publication using the MICO Event channel is 

scalable for all forecast sizes up to five collection sites. 
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Figure 66: Submit Transaction -1,10,100 Forecasts 
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For one and ten forecasts, distributed processing has no benefit at all, as 

execution time gradually increases with additional business (validation) layers. 
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6.6 Summary 

In this chapter, results based on experimental design and implementation 

are presented and discussed (§4.3 Experimental Design, §5.4 Experiments). 

CORBA benchmark results are shown and the impact of measuring call dispatch 

rate, marshaling rate, server-side throughput, and Name Server performance is 

discussed in the context of overall distributed system design. Forecast publica- 

tion and validation results are presented and the efficacy of flexible system de- 

sign is addressed in the context of federating these services within the distrib- 

uted TFMS [21]. Integration experiments are used to show the effectiveness in 

meeting the customer's functional requirements, and showing why a certain to- 

pology or processor allocation is employed. 
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VII. Conclusion 

A complex system that works is invariably found to have evolved from a simple system 
that worked. — John Gall 

7.1 Research Significance Revisited 

This research provides a distributed system engineering approach for the 

Air Force Weather Agency (AFWA), which uses a combination of structured, ob- 

ject-oriented, and distributed software engineering techniques to develop an effi- 

cient and evolutionary software system [4, 5, 6,16, and 17]. This design method- 

ology incorporates proven principles such as component reuse and architectural 

development through the use of design patterns and modular software construc- 

tion techniques [13 and 14]. While these design techniques are nothing new to 

most software developers, the methodology provides AFWA with a measured 

approach that examines the big picture of integrating their business functions into 

a truly global software environment. This investigation addresses TAF submis- 

sion, validation, publication, and metric collection functions in their entirety, 

showing exactly how these functions are decomposed, designed, implemented, 

and ultimately allocated to hardware within a distributed computing environ- 

ment. By viewing the problem in a global context, research goals and objectives 

were surpassed and the results are a more realistic representation of possible so- 

lutions (§1.3 Research Goals, §1.4 Specific Objectives), given the constraint of an 
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open, distributed AFW operating environment (§1.6 Assumptions, Scope, and 

Constraints). 

In addition to providing an end-to-end investigation of TAF processing and 

metric collection, this effort also provides AFW with a logical, rule-based meas- 

urement model used to measure and collect data quality statistics. This meas- 

urement model has the potential impact of providing each regional processing 

center (OWS) with its own data quality collection facility to measure the data 

processing process while also certifying data prior to submission to the data 

warehouse at AFWA (§3.4.1.5 Measuring TAF Data Quality and Accuracy). The 

effectiveness of this data measurement and processing model is one of using a 

simple, consistent approach to processing and measuring data at the local (re- 

gional) level. The regional processing centers must address their own data qual- 

ity deficiencies if they do not meet organizational standards while the data ware- 

house is used as an AFW knowledge source for enterprise data storage and min- 

ing of information that affects the entire AFW organization. 

This investigation also shows the importance of developing an application 

prototype for performance benchmarking purposes, derived from a simple cli- 

ent/server model. The prototype is used to quantify the impact of design deci- 

sions on computer resource utilization, system scalability, system performance, 

ease of implementation, and system evolution (§4.2.2 CORBA Performance Met- 

rics).  These performance benchmarks are also used as selection criteria for objec- 
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tive purchasing decisions, whether its procuring the appropriate number of 

hardware components based on measured system efficiencies or determining an 

appropriate CORBA implementation that meets the minimum performance and 

functional requirements for the system. 

7.2 Critical Research Factors 

Four factors impacting this investigation are related to meeting the objec- 

tives set forth in chapter one (§1.4 Specific Objectives): 

1. Functionality: Does the software system meet customer functional require- 

ments? The TAF accuracy measurement model previously discussed provides 

an efficient, rule-based approach to the problem of processing and measuring 

TAF accuracy (§7.1 Research Significance Revisited). 

2. Performance: Does ORB performance meet application requirements? Is the 

application tuned for its operating environment? A simple client/server 

measurement methodology is used to measure ORB performance. This 

model is then extended to application-specific functions and data types to 

quantify the impact of bulk operations, multithreading, and component 

granularity (§4.2.2 CORBA Performance Metrics, §6.2 ORB Experiments). 

3. Complexity: Does the software design contain well-defined interfaces that 

hide details and complexities? Are sufficient software abstractions provided 

to simplify the architecture? The TAF accuracy measurement model is the 

principal abstraction upon which all further design is based (§3.4.1.5 Measur- 
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ing TAF Data Quality and Accuracy). The design methodology completely 

separates interface definition from implementation detail and uses OMG ser- 

vices to promote reliability, reusability, and architectural stability at the ap- 

propriate level (§3.5 Distributed Object System Design). 

4. Scalability and Extensibility: Is the software design easily extended and scal- 

able? Does the software system use a scalability model to solve design issues 

in the global, enterprise, system, application, and component-level architec- 

tural domains? The design is a scalable and easily extendable solution to a 

global processing problem where proven design patterns are applied and im- 

plemented at the appropriate architectural level (§3.5.3 System Performance, 

Evolution, and Reliability Considerations, §3.5.2 System Module Design, §6.5 

Integration and System Experiments). 

7.3 Efficiency and Effectiveness Discussion 

The major research findings in the context of distributed system efficiency 

and methodology effectiveness are discussed in this section. First, the impact of 

a quantitative approach using system prototyping is presented then the overall 

effectiveness of the methodology is examined. 

7.3.1 Impact of System Prototyping 

All complex systems evolve from simple models. In the case of distrib- 

uted object systems, the effectiveness of using a simple client/server model is 
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used to show the impact of calling and sending specific data types to a remote 

machine. From this simple measurement model, the prototype is incrementally 

extended to include more and more distributed application functionality such as 

testing a vendor's CORBA implementation, a designer's algorithm selection, or a 

module's particular deployed configuration in a NT-tier topology. The overall 

impact of using distributed system prototyping is that it provides valuable in- 

sight into efficient distributed application design. This information is used for 

software vendor selection, hardware purchases, or as empirical data that shows 

inefficient use of current hardware platforms as it relates to resource utilization 

and computing efficiency. The following factors require attention to enable effi- 

cient distributed design and component placement in a CORBA environment: 

1. Call latency/ dispatch rates for ORBs: Call dispatch rates for parameterless 

and parameterized operations set a fundamental design limit for an object re- 

quest broker. If the TFMS required an operation dispatch rate of over 300 

calls/ second for a double data type, then other ORBs would have to be con- 

sidered because MICO's dispatch rate was ~299 (§6.2 ORB Experiments). 

2. Name Service and Event Service performance: Name resolution and binding 

times can greatly impact a large, distributed environment that relies on a 

Name Service to solve the problem of how components get object references 

at runtime. The MICO name service shows that the number of bindings in a 

naming context has no effect on client name resolution and binding (§6.2 ORB 
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Experiments). Many distributed environments are also event-driven, so it's 

important to stress the fan-out capability of the implementation. The MICO 

Event service is scalable for 1,10,100, and 1000 forecasts up to five collection 

sites, but when seven sites subscribed for publications, the time to publish 100 

and 1000 forecasts increased dramatically. Test all CORBA services designed 

in the application's system architecture to determine if it meets system re- 

quirements (§6.3 Publication Experiments). 

3. Data types and their corresponding return types: These results confirm the 

importance of designing remote interface operations with bulk data transfer 

support. The impact of providing bulk transfer support as operation parame- 

ters are shown to be an effective way to efficiently design CORBA IDL opera- 

tions. A single forecast and a CORBA sequence of 10 forecasts incurred the 

same communication costs (§6.2 ORB Experiments). 

4. Server/component computation times: Too little computation on the 

server/component reduces overall system efficiency because of the overhead 

incurred with distributed computing. The TFMS validation function exhibits 

good overall efficiency when validating 100 or 1000 forecasts, but system effi- 

ciency cannot be maintained when validating 1 or 10 forecasts (§6.4 Valida- 

tion Experiments). 

5. Task allocation and threads: Certain functions are more amenable to a multi- 

threaded approach.   Allocate separate tasks for expensive I/O or computa- 
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tional processing. In the case of testing server performance, a single-threaded 

implementation is underutilized for a 10 KFLOP workload, but is fully util- 

ized when a 1 MFLOP workload is applied. Overall server response time and 

throughput is improved by allocating a separate task (thread) for expensive 

workloads; this approach also provides hardware scalability when additional 

processors are added to the machine (§6.2 ORB Experiments). 

6. Component Integration: Once the distributed characteristics of individual 

components are determined, integrate the components for system-wide 

transaction testing to determine end-to-end efficiency. When testing compo- 

nent integration, keep Amdahl's Law in mind: 1) make the common case fast, 

and 2) application speedup is bounded by the slowest component [10]. The 

submit transaction showed a dramatic decrease in execution time when 100 

or 1000 forecasts are submitted to three validation modules, but levels off due 

to increased communication time when using five validation modules (§6.5 

Integration and System Experiments). 

7.3.2 Effectiveness of Methodology 

A major focus of this research investigation was to describe an appropri- 

ate design methodology suitable for large distributed object systems (§111. Dis- 

tributed System Design). Major findings include: 

166 



1. Interface and implementation separation is paramount to minimizing soft- 

ware dependencies and maximizing reuse in object-oriented systems (§3.5.2 

System Module Design). 

2. Software design patterns are a very effective form of guidance available for 

solving design and implementation issues at all architectural levels [13 and 

14]. Design patterns are also very useful for designing easily extendable 

software systems. Use patterns at all architectural levels; e.g. use GORBA's 

Event Service as the publish/subscribe mechanism at the system level 

(§3.5.1 System Partitioning, §3.5.2 System Module Design). 

3. Parameterized types aid system reuse and overall reliability. The C++ STL 

provides many different data structures, e.g. vector, list, stack, map, multi- 

map, etc. [9]. Using the C++ STL increases application reliability and soft- 

ware reuse while reducing coding and debugging time since its containers 

and algorithms are fully tested and debugged [51 and 70]. 

4. Structured analysis techniques, e.g. data/control flow diagrams are more 

effective for properly partitioning the distributed system into modules and 

specifying the task architecture (§3.4.2 Information System Model). 

5. OO modeling worked best to show the system's schema, message paths be- 

tween system entities, and internal task behavior (§3.4.2.4 Transaction 

Model, §3.5 Distributed Object System Design). 
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The effectiveness of this approach is primarily found in the unification of 

many proven software analysis, design, implementation, and performance predic- 

tion techniques used to efficiently and incrementally develop a large, distributed 

object system. This methodology uses proven techniques at each stage of the 

lifecycle. By using the strengths of structured, modular, and object-oriented 

software design methods, a loosely coupled and highly autonomous design is 

produced. System extension and modification to component/module implemen- 

tations has no effect on clients, since they're compiled to stable interfaces. By us- 

ing proven design patterns to solve problems at each architectural level, an ex- 

tensible, efficient, and understandable software system is developed. The use of 

parameterized types (generics) along with OO programming techniques reduces 

source code errors by using preexisting component/standard libraries and appli- 

cation classes, e.g. Threadpool application class and C++ map container, to im- 

plement either application or additional object-level functionality. 

7.4 Future Research and Recommendations 

The TFMS prototype provides simple event service and name service im- 

plementations. Future research efforts could explore federating the OMG Event, 

Name, or Trader services to investigate their use as scalable, global architectures. 

The OMG Event service enables site autonomy by completely decoupling clients 

from servers, as location independence is a major goal concerning open system 

design [12 and 21].  Future research efforts could also expand upon this notion 

168 



by implementing dynamic discovery characteristics provided by the CORBA 

Query, Notification, and Trader services. Research in this area has direct appli- 

cation in knowledge or agent-based systems where component mobility and 

autonomy are the overriding system goal [8]. 

The basic TFMS N-tier application and test generator is built to perform a 

variety of tests or implement certain functionality: call latency, parameter mar- 

shaling, Win32 API threads, event service, and name service. Many of the ex- 

periments are useful in determining the best performing ORB for an organiza- 

tion's business requirements, or if a different distributed object paradigm, e.g. 

DCOM or Java RMI are more appropriate. Additional development could vastly 

improve the comprehensiveness of the measurement model for all distributed 

object paradigms with a more intuitive graphical user interface. This measure- 

ment model could address real-time distributed application models as well, with 

particular emphasis on priority inversion bounding and quality of service guar- 

antees. 
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Appendix A: Object Management Architecture 
(OMA) 

To support very large, complex distributed object applications, it's desir- 

able to specify an infrastructure that supports the handling of common opera- 

tions such as object lifecycles, identification, interface definitions, and intercom- 

munication. The Object Management Group (OMG) was formed to reduce com- 

plexity and lower development cost and time. The OMG is an international 

trade organization incorporated as a nonprofit organization in the United States. 

OMG is currently comprised of over 800 corporate members and the number 

gets larger every year [21]. OMG provides the OMA, which consists of all the 

terms and definitions that all specifications are based [26]. The OMA contains 

the following elements as depicted in Figure 68: 

1. Object Request Broker (ORB): A communication standard known commer- 

cially as CORBA. CORBA 2.0 specified the Internet Inter-ORB Protocol 

(HOP), which guarantees ORB interoperability if the vendor's ORB is CORBA 

2.0 compliant [21]. 

2. Object Services: Common object specifications such as naming, security, and 

transaction and are known commercially as Common Object Service Specifi- 

cations (COSS). The COSS are collections of system-level services packaged 

as components specified in IDL [8]. 
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Figure 68: OMA [26] 

3. Common Facilities: A set of horizontal and vertical IDL-specified services. 

Horizontal services may apply to more than one application domain such as 

information and system management while vertical services apply to a par- 

ticular domain such as finance or healthcare. 

4. Domain Interfaces: Specific application domains such as finance and health- 

care [26]. 

5. Application Objects: Components specified for end-user applications. Appli- 

cation objects build on the services provides by the OMA. 

The OMA is broken down into two main models: an Object Model and a 

Reference Model. The Object Model defines how the interfaces of objects distrib- 

uted across a heterogeneous environment are described, and the Reference 

Model characterizes interactions between object interfaces [21]. 
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A.1 The OMG Object Model 

The Object Model defines an object as an encapsulated entity with an im- 

mutable distinct identity whose services are accessed only through a well- 

defined interface [26]. As the previous statement may show some readers, the 

OMA has some unique concepts and terminology associated with it. We explore 

a few concepts and terms regarding the OMA in this section. 

A.1.1 General Concepts and Terminology 

General terms and concepts related to CORBA [21]: 

1. A CORBA object is a virtual entity capable of being located by an ORB and its 

operations invoked by a client. The "virtual" is regarding the fact that it 

doesn't exist unless it's made concrete by an implementation language such 

as C++ or Java. 

2. A CORBA object servicing a client request is called a target object. The 

CORBA Object Model is single dispatching, where the target object is deter- 

mined solely by an object reference. 

3. A client is an entity that invokes a CORBA object. A server is an application 

where one or more CORBA objects exist. Of course, the term client and 

server are meaningful only if considering the request context. 

4. A request invokes an operation on a CORBA object. 

5. An object reference is used to identify, locate, and address a CORBA object. 

Object references are opaque to clients - only used for method invocation. 
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6. A servant is the CORBA object implementation in a particular programming 

language (class). Servants incarnate CORBA objects and can be considered 

object instances of a particular class. 

A.1.2 OMG Interface Definition Language 

Metadata is a crucial ingredient when developing flexible distributed sys- 

tems. Metadata provides a distributed system with self-describing, dynamic, 

and reconfigurable capabilities. Using metadata, components discover each 

other at runtime, further enhancing interoperability [8]. Because IDL is a declara- 

tive language, its sole purpose is to allow object interfaces to be defined in a 

manner entirely independent of any particular programming language [21]. This 

allows applications implemented in different programming languages to inter- 

operate; this language neutrality is critical to the OMA supporting heterogeneous 

environments [8, 21, and 26]. Language mappings specify how IDL is trans- 

formed into a particular programming language e.g. in C++, interfaces transform 

to classes and in Java, interfaces transform to public interfaces. 

As Figure 69 shows, IDL data types include built-in simple types like short 

and string, and also constructed types such as enumeration, sequence and array. 

Object references are denoted in IDL just as many programming languages de- 

note user-defined structures or classes, by using the name of the interface as the 

type. Multiple interface inheritance is supported in IDL as well. 
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Figure 69: OMA Legal Values [26] 

Modules provide a namespace to a group of interface definitions and are 

analogous to C++ namespaces and Java packages. Interfaces define a set of meth- 

ods a client may invoke and map to C++ and Java as mentioned above. Opera- 

tions denote a service (method) that clients may invoke. Operation parameters 

have mode in, out, or inout with respect to the servant. Parameter modes are 

necessary for two primary reasons: 

1. Directional attributes are required for efficiency e.g. an "out" parameter is 

only communicated from the server to the client [12]. 

2. Directional attributes determine responsibility for memory management, 

whether the server or client is responsible to allocate memory for a specific 

parameter [21]. 

A.2 The OMG Reference Model 

As mentioned above, the Reference Model provides interface categories 

that are general groupings for object interfaces that collaborate to carry out a set 
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of responsibilities - commonly referred to as frameworks. In this section the ORB 

and the COSS frameworks are presented. 

A.2.1 Object Request Broker (ORB) 

CORBA defines the interface specification for an OMA-compliant ORB. 

Clients are not aware of the communication mechanisms employed in the ORB, 

how objects are activated, how objects are implemented, or where objects are lo- 

cated. The ORB is the application building foundation for distributed system de- 

sign using the OMA. The ORB ensures interoperability between applications in 

both homogeneous and heterogeneous environments. The OMG Interface Defi- 

nition Language (IDL) provides the "glue", connecting objects in a standard way 

by defining the interfaces to CORBA objects. The CORBA specification has the 

following elements as shown in Figure 70: 

1. ORB Core: The CORBA runtime infrastructure. The ORB Core interface is not 

specified by CORBA, and is therefore vendor specific. 

2. ORB Interface: The standard interface written in IDL and provided by a 

CORBA- compliant ORB. 

3. IDL Stubs: Generated by the IDL compiler for each interface defined in IDL. 

Stubs hide the low-level networking details of object communication from the 

client, while presenting a high-level, object type-specific application pro- 

gramming interface (API) [33]. 
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Figure 70: CORBA Specification 

4. Dynamic Invocation Interface (DII): An alternative to static stubs for clients to 

"discover" and invoke objects. While static stubs provide an object type- 

specific API, DII provides a generic mechanism for constructing requests at 

run time. The interface repository, a client's object definition database of 

metadata, allows some measure of type checking to ensure that a target object 

can support the request made by the client. 

5. Object Adapter: Provides extensibility of a CORBA-compliant ORB to inte- 

grate alternative object technologies into the OMA. For example, adapters 

may be developed to allow remote access to objects that are stored in an ob- 

ject-oriented database. Each CORBA-compliant ORB must support a specific 

object adapter called the basic object adapter (BOA). CORBA release 2.2 

specifies the portable object adapter (POA), which removed server-side port- 

ability problems that existed in the BOA [21]. 
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6. IDL Skeletons: The server-side analogue of IDL stubs. IDL skeletons receive 

requests for services from the object adapter, and call the appropriate opera- 

tions in object implementations. 

7. Dynamic Skeleton Interface (DSI): The server-side counterpart of DII. While 

IDL skeletons invoke specific operations in the object implementation, DSI 

defers this processing to the object implementation repository. This is useful 

for developing bridges and other mechanisms to support inter-ORB interop- 

eration. The implementation repository is the server analogue to the interface 

repository; this is the server-side object definition database. 

A.2.2 General Clienl/Sever Flow 

Refer once again to Figure 70 for the following discussion. Requests flow 

down the client application, through the ORB, and up the server application as 

follows: 

1. The client invokes a request into the ORB using either the static IDL stub or 

dynamic invocation interface (DII). 

2. The client ORB transmits the request to the server ORB using HOP. 

3. The server ORB dispatches the request to the appropriate object adapter 

(BOA or POA). 

4. The BOA or POA further dispatches the request to the appropriate servant 

object using either the static server skeleton or the dynamic skeleton interface. 
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5.   The servant object that implements the interface definition performs the re- 

quest and returns a response if required. 

A.2.3 Application Development 

To call a CORBA object member function, a client only needs to know the 

standard ORB Services and the object's IDL. Creating a CORBA Application in- 

volves the following generic steps: 

1. Define object interfaces using the CORBA IDL. 

2. Compile these interfaces with an IDL Compiler.  This produces stub code for 

client objects and skeleton code for server objects. 

3. Develop server programs that implement the IDL interfaces. 

4. Register the server object(s) in the ORB. 

5. Develop client programs that use the IDL interfaces. 

A.2.4 Object Services 

Object Services are domain-independent, horizontally oriented interfaces 

used by many end-user application programs. Major OMA object services: 

1. Life Cycle: Used for creating, copying, moving and deleting components. 

2. Persistence: Provides an interface for storing components persistently. 

3. Name: Allows components to locate each other. 

4. Event: Allows components to register and deregister for events. 

5. Concurrency Control: Provides a resource lock manager. 
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6. Transactional: Provides two-phase commit using transactions. 

7. Relationship: Allows the creation of dynamic relations among components. 

8. Externalization: Provides a way of streaming data into or out of a component. 

9. Query: Provides object query operations. 

10. License: Controls object use. 

11. Property: Provides a mechanism to alter component attributes. 
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Appendix B: CORBAIDL 
/*  
Module: Terminal Forecast Management System (TFMS). 
TYPE: CORBA Interface Definition Language (IDL) 
DATE: 12/12/1999 
FILENAME: TFMS.idl 
DESCRIPTION: TFMS data and object interface definition. 
AUTHOR: James S. Douglas, Captain, USAF 
REVISIONS: 

12/12/1999: TFMS initial definition (Douglas - jsd) 
 V 

// Uniqueness prefix applied for TFMS repository data. 
#pragma prefix "douglas.com" 

// Begin TFMS Namespace definition. 
// // 
module TFMS 
{ 
/   /***************************************************************** /  I 

II Begin TFMS data definitions 
// // 
enum MessagelD 

{// scheduled, special, or forecasted weather report identifier 
MET AR, SPECI, TAF}; 

enum Modifier 
{// scheduled, ammended, corrected, or unscheduled 
REG, AMD, COR, RTD}; 

struct DateTime 
{// TFMS Date/Time data structure 

unsigned short year; 
unsigned short quarter; // quarter = 1, 2, 3, or 4 
unsigned short month; 
unsigned short day; 
unsigned short hour; 
unsigned short minute; 

struct ForecastData 
{// TFMS forecast data structure 

unsigned short icao; 
string<4> majcom; 
MessagelD message_id; 
Modifier modifier; 
unsigned short wind_direction; 
unsigned short wind_speed; 
unsigned short wind_gusts; 
unsigned short visibility; 
string significant_weather; 
string cloud_layer; 
string remarks; 
string<14> key; // icao + year + month + day + hour 
DateTime issued; 
string change_group; 
unsigned short crosswind; 

}; 
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struct ObservationData 
{// TFMS observation data structure 

string<4> icao; 
string<4> majcom; 
MessagelD message_id; 
Modifier modifier; 
unsigned short wind_direction; 
unsigned short wind_speed; 
unsigned short wind_gusts; 
unsigned short visibility; 
string significant_weather; 
string cloudjayer; 
string remarks; 
string<14> key; // icao + year + month + day + hour 
DateTime issued; 
unsigned short runway_visual_range; 

/* Note: The use of struct types for forecasts and observations 
is to ensure compatibility across all object request brokers. A 
more elegant definition would use objects by value, currently 
supported in CORBA version 2.3, but not widely implemented. 
If using objects by value, a Weather interface is defined, then 
Forecast and Observation interfaces       would inherit all 
Weather attribute and operation definitions, (jsd) */ 

// Defines sequences of forecast and observation data to 
// support bulk validation/publication requirements, 
typedef sequence<ForecastData> Forecasts; 
typedef sequence<ObservationData> Observations; 

struct ValidationField 
{// Contains validation information for a specific weather element. 

// The ValidationField data structure is used to collect metrics 
// for an individual weather element. 

MessagelD type; 
string<14> key; // icao + year + month + day + hour 
string field; 
boolean passed_format; 
boolean passed_accuracy; 
string reason- 
string category; 
DateTime accuracy_id; 

// Defines a sequence of validation fields as the 
// validation result. 
typedef sequence<ValidationField> ValidationFields; 

struct ValidationReport 
{// An individual validation report consists of a sequence of 
// validation fields. 

ValidationFields report; 

// Defines a sequence of validation reports to 
// support bulk validation/metric processing requirements, 
typedef sequence<ValidarionReport> ValidationReports; 
// // 

// End TFMS data definitions. 

181 



// Begin TFMS object interface definitions 
// // 
interface IRBusiness 
(// IDL for remote Business interface 

// Submit operations. All forecasts and observations 
// that pass validation are also published to other sites. 
// Pre: Requires a sequence of forecasts or observations. 
// Post: Returns a sequence of validation reports. 
// Note: TFMS Experiments do not require returning 
// validation results. 
void submitForecasts (in Forecasts tafs); 
ValidationReports submitObservations (in Observations obs); 

// Operation to manually validate forecasts. 
// Used for testing validation function. 
// Pre: Requires a sequence of forecasts. 
// Post: Returns a sequence of validation results. 
// Note: TFMS Experiments do not require returning 
// validation results. 
void validate (in Forecasts tafs); 

// Operation to manually publish forecasts. 
// Used for testing publication function. 
// Pre: Requires a sequence of forecasts and algorithm selection. 
// Primary copy = 1, Pipeline = 2, Event Channel = 3. 
// Post: None. 
void publish (in Forecasts tafs, in unsigned short algorithm); 

}; 

interface IRCollection 
{// IDL for remote Collection interface. 

// Add operations. All forecasts, observations, 
// and validation reports are processed for data collection. 
// Pre: Requires a sequence of forecasts, observations, 
// or validation reports. 
// Post: None. 
void addForecasts (in Forecasts tafs); 
void addObservations (in Observations obs); 
void addReports (in ValidationReports reps); 

}; 

interface IRBenchmark 
{// IDL for ORB benchmark interface. 

oneway void callRate(); 
void marshalDouble (in double d); 
void marshalForecast (in ForecastData fd); 
void marshalBulk (in Forecasts tafs); 
void singleThread (in unsigned long workload); 
void multiThread (in unsigned long workload); 

// // 
// End TFMS object interface definitions 

}; 
// // 
// End Namespace definition for the Terminal Forecast Management System. 
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ACID 

AFI 

Acronyms 

Atomicity, Consistency, Isolation, and Durability 

Air Force Instruction 

AFMAN       Air Force Manual 

AFW Air Force Weather 

AFWA Air Force Weather Agency 

AWDS Automated Weather Distribution System 

C/S Client/Server 

COM Component Object Model 

CORBA Common Object Request Broker Architects 

COSS Common Object Service Specifications 

COTS Commercial Off-The-Shelf 

DBMS Database Management System 

DC Domain Controller 

DCOM Distributed Component Object Model 

DDBMS Distributed Database Management System 

DDL Data Definition Language 

DFD Data Flow Diagram 

DLL Dynamic Link Library 

DML Data Manipulated Language 

DOS Distributed Object System 
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DTC Distributed Transaction Coordinator 

EXE Executable 

FAA Federal Aviation Administration 

FLOP Floating-point Operations 

FLOPS Floating-point Operations per second 

GOTS Government Off-The-Shelf 

ICAO International Civil Aviation Organization 

IAW In Accordance With 

IR Information Retrieval 

ISA Instruction Set Architecture 

KDC Key Distribution Center 

LAN Local-Area Network 

LPC Local Procedure Call 

MAN Metropolitan-Area Network 

MICO MICO Is CORBA 

MIPS Millions of Instructions per second 

MSMQ Microsoft Message Queue Server 

MTS Microsoft Transaction Server 

NOS Network Operating System 

NT New Technology 

ODBMS Object-Oriented Database Management System 
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OMA Object Management Architecture 

OMG Object Management Group 

OO Object Oriented 

OOSE Object Oriented Software Engineering 

OQL Object Query Language 

ORB Object Request Broker 

OTM Object Transaction Monitor 

OWS Operational Weather Squadron 

PDC Primary Domain Controller 

POA Portable Object Adapter 

POS Persistent Object Service 

PPC Pile of Personal Computers 

RM Resource Manager 

RMI Remote Method Invocation 

RPC Remote Procedure Call 

SMP Symmetrical Multiprocessor 

SQL Structured Query Language 

SRD Systems Requirement Document 

STL C++ Standard Template Library 

TAF Terminal Aerodrome Forecast 

TCP/IP Transmission Control Protocol/Internet Protocol 
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TFMS Terminal Forecast Management System 

TGS Ticket Granting Server 

TPM Transaction Processing Monitor 

VB Microsoft Visual Basic 

VC Microsoft Visual C++ 

WAN Wide-Area Network 

WF Weather Flight 

WMO World Meteorological Organization 

WWW World Wide Web 
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Glossary 

Terms and definitions related to this research: 

Abstract Class: A class whose primary purpose is to define an interface. An ab- 
stract class cannot be instantiated within the software system. 

Abstract Operation: An operation that declares a signature but doesn't imple- 
ment the operation. In C++, this is a pure virtual member function. 

Aggregate Object: An object composed of other objects. 

Authentication: Provides a means to verify the identities of clients and servers. 

Black box: A style of reuse based on class aggregation or a style of testing where 
internal implementation details are not used or revealed. 

Class: A class defines an object's interface and implementation. 

Client: An entity that invokes a CORBA object. 

Concrete Class: A class with no abstract operations. A concrete class can be in- 
stantiated within the software system. 

Concurrency: Although a transaction is an individual task within the system, 
multiple transactions may need to access the same data at the same time. 

Constructor: An operation that defines the way to initialize an object within a 
particular class of objects. 

CORBA object: A virtual entity capable of being located by an ORB and its op- 
erations invoked by a client. The "virtual" is regarding the fact that it doesn't 
exist unless it's made concrete by an implementation language such as C++. 

Coupling: The degree of dependency between software components. Tight cou- 
pling means objects are highly dependent on each other while loose coupling 
usually refers to objects that have no dependencies on each other. 

Data Allocation Schema: Describes where data fragments are located (site parti- 
tioning) [28]. 

Data Fragmentation Schema: Describes how global relations (data) are divided 
among local data stores. 

Data replication: Signifies that multiple copies of data exist in the distributed 
system to improve fault tolerance and performance [9]. 

Delegation: An implementation method where an object delegates a request to 
another object who then carries out the request. 
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Design Pattern: Addresses recurring design problems in object systems. Usually 
describes the problem, circumstances for applying the pattern, structural exam- 
ples, and consequences of using the design pattern. 

Distributed Database: A logical collection of shared data, physically distributed 
across the nodes of a computer network [28]. 

Encapsulation: Result of hiding an object's implementation or internal state. 

Inheritance: Consists of interface and implementation inheritance. In CORBA, 
multiple interface inheritance is supported to derive new interfaces from existing 
ones. Conventional class inheritance typically refers to the combination of inter- 
face and implementation inheritance. A class that inherits from another class is 
called a subclass or derived class. 

Integrity: Refers to a transaction transforming the database from one consistent 
state to another consistent state. 

Interface: Describes the set of operations or services an object provides to clients. 
In distributed object systems, you program to an interface, not an implementa- 
tion. 

Localized failure: Denotes that if a node in the distributed system fails, it doesn't 
affect the operation of other nodes [27 and 28]. 

Location Transparency: Signifies that users do not know or need to know where 
data is stored on the network [12]. 

Object Reference: Used to identify, locate, and address a CORBA object. Object 
references are opaque to clients - only used for method invocation. 

Operation: An object's data is manipulated by operations. Operations are per- 
formed when the object receives a request. 

Overriding: Redefining an inherited operation in a derived class. 

Parameterized Type: A type that requires additional type specification supplied 
as parameters during declaration. Called templates in C++, generics in Ada. 

Polymorphism: The ability to substitute objects with matching interfaces for one 
another during run time. In C++, a dynamic cast operation is used to downcast 
to the appropriate object type. CORBA uses a narrow operation to downcast. 

Principal: A user or process that requires secure communication. 

Recovery: Refers to the ability to rollback all intermediate changes if a particular 
action cannot be completed, so the database maintains integrity and is not left in 
an inconsistent (unknown) state. 

Request: Invocation of an operation on a CORBA object. 
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Secret Key Cryptosystem: Uses a single key for both encryption and decryption. 

Servant: A CORBA object implementation in a particular programming lan- 
guage. Servants incarnate CORBA objects and can be considered object instances 
of a particular class. 

Server: An application where one or more CORBA objects exist. 

Single Logical Database View: Analogous to the single system image notion 
where the distributed system appears to the user as a centralized or local system 
[10,12, and 27]. 

Target Object: A CORBA object servicing a client request. 

Traceability: Validation that a particular software function corresponds to a 
user-specified requirement. 

Transaction: Considered a logical unit of work, recovery, integrity, and concur- 
rency in a database system [9]. 

Type: The name of a particular interface or class. 

White Box: A style of reuse based on class inheritance or a style of testing where 
internal implementation details are used or revealed. 

Work: Refers to performing a required system action. 
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